Адаптация классов Dataset
и Example
из torchtext.data
from torchtext.data import Field, Dataset, Example
import pandas as pd
class DataFrameDataset(Dataset):
"""Class for using pandas DataFrames as a datasource"""
def __init__(self, examples, fields, filter_pred=None):
"""
Create a dataset from a pandas dataframe of examples and Fields
Arguments:
examples pd.DataFrame: DataFrame of examples
fields {str: Field}: The Fields to use in this tuple. The
string is a field name, and the Field is the associated field.
filter_pred (callable or None): use only exanples for which
filter_pred(example) is true, or use all examples if None.
Default is None
"""
self.examples = examples.apply(SeriesExample.fromSeries, args=(fields,), axis=1).tolist()
if filter_pred is not None:
self.examples = filter(filter_pred, self.examples)
self.fields = dict(fields)
# Unpack field tuples
for n, f in list(self.fields.items()):
if isinstance(n, tuple):
self.fields.update(zip(n, f))
del self.fields[n]
class SeriesExample(Example):
"""Class to convert a pandas Series to an Example"""
@classmethod
def fromSeries(cls, data, fields):
return cls.fromdict(data.to_dict(), fields)
@classmethod
def fromdict(cls, data, fields):
ex = cls()
for key, field in fields.items():
if key not in data:
raise ValueError("Specified key {} was not found in "
"the input data".format(key))
if field is not None:
setattr(ex, key, field.preprocess(data[key]))
else:
setattr(ex, key, data[key])
return ex
Затем, если у вас есть два набора данных под рукой train_df
, valid_df
, просто загрузите их в объект набора данныхс:
train_ds = DataFrameDataset(train_df, fields)
valid_ds = DataFrameDataset(valid_df, fields)