Вы можете сделать что-то подобное, чтобы изменить тип данных с одного на другой.
Я создал фрейм данных, похожий на ваш, как показано ниже:
import sparkSession.sqlContext.implicits._
import org.apache.spark.sql.types._
var df = Seq(("03099","Volumetric/Expand...", "201867", "2018-05-31 18:25:00"),("03307","Elapsed Day Factor", "201867", "2018-05-31 18:25:00"))
.toDF("DatatypeCode","data_typ", "proc_date", "cyc_dt")
df.printSchema()
df.show()
Это дает мне следующий вывод:
root
|-- DatatypeCode: string (nullable = true)
|-- data_typ: string (nullable = true)
|-- proc_date: string (nullable = true)
|-- cyc_dt: string (nullable = true)
+------------+--------------------+---------+-------------------+
|DatatypeCode| data_typ|proc_date| cyc_dt|
+------------+--------------------+---------+-------------------+
| 03099|Volumetric/Expand...| 201867|2018-05-31 18:25:00|
| 03307| Elapsed Day Factor| 201867|2018-05-31 18:25:00|
+------------+--------------------+---------+-------------------+
Если вы видите схему выше, все столбцы имеют тип String.Теперь я хочу изменить тип столбца proc_date
на Integer
и тип cyc_dt
на Date
, я сделаю следующее:
df = df.withColumnRenamed("DatatypeCode", "data_type_code")
df = df.withColumn("proc_date_new", df("proc_date").cast(IntegerType)).drop("proc_date")
df = df.withColumn("cyc_dt_new", df("cyc_dt").cast(DateType)).drop("cyc_dt")
и при проверке схемы этого кадра данных
df.printSchema()
, затем он выдает следующий вывод с новыми именами столбцов:
root
|-- data_type_code: string (nullable = true)
|-- data_typ: string (nullable = true)
|-- proc_date_new: integer (nullable = true)
|-- cyc_dt_new: date (nullable = true)