Пример CIFAR10: Керас - PullRequest
       11

Пример CIFAR10: Керас

0 голосов
/ 09 февраля 2019

Я новичок и пытаюсь реализовать классификатор изображений, используя набор данных CIFAR 10, используя Keras, я использовал следующий код здесь, я узнал, как он работает, и я попробовал этот небольшой фрагмент кода, чтобы научиться реализовывать CIFAR 10, но егоне работает, не выдает никакой ошибки, но процесс вообще не запускается.Я не знаю, что мне здесь не хватает.

    '''
#Train a simple deep CNN on the CIFAR10 small images dataset.
It gets to 75% validation accuracy in 25 epochs, and 79% after 50 epochs.
(it's still underfitting at that point, though).
'''

from __future__ import print_function
import keras
from keras.datasets import cifar10
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
import os

batch_size = 32
num_classes = 10
epochs = 100
data_augmentation = True
num_predictions = 20
save_dir = os.path.join(os.getcwd(), 'saved_models')
model_name = 'keras_cifar10_trained_model.h5'

# The data, split between train and test sets:
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same',
                 input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))

# initiate RMSprop optimizer
opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-6)

# Let's train the model using RMSprop
model.compile(loss='categorical_crossentropy',
              optimizer=opt,
              metrics=['accuracy'])

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255

if not data_augmentation:
    print('Not using data augmentation.')
    model.fit(x_train, y_train,
              batch_size=batch_size,
              epochs=epochs,
              validation_data=(x_test, y_test),
              shuffle=True)
else:
    print('Using real-time data augmentation.')
    # This will do preprocessing and realtime data augmentation:
    datagen = ImageDataGenerator(
        featurewise_center=False,  # set input mean to 0 over the dataset
        samplewise_center=False,  # set each sample mean to 0
        featurewise_std_normalization=False,  # divide inputs by std of the dataset
        samplewise_std_normalization=False,  # divide each input by its std
        zca_whitening=False,  # apply ZCA whitening
        zca_epsilon=1e-06,  # epsilon for ZCA whitening
        rotation_range=0,  # randomly rotate images in the range (degrees, 0 to 180)
        # randomly shift images horizontally (fraction of total width)
        width_shift_range=0.1,
        # randomly shift images vertically (fraction of total height)
        height_shift_range=0.1,
        shear_range=0.,  # set range for random shear
        zoom_range=0.,  # set range for random zoom
        channel_shift_range=0.,  # set range for random channel shifts
        # set mode for filling points outside the input boundaries
        fill_mode='nearest',
        cval=0.,  # value used for fill_mode = "constant"
        horizontal_flip=True,  # randomly flip images
        vertical_flip=False,  # randomly flip images
        # set rescaling factor (applied before any other transformation)
        rescale=None,
        # set function that will be applied on each input
        preprocessing_function=None,
        # image data format, either "channels_first" or "channels_last"
        data_format=None,
        # fraction of images reserved for validation (strictly between 0 and 1)
        validation_split=0.0)

    # Compute quantities required for feature-wise normalization
    # (std, mean, and principal components if ZCA whitening is applied).
    datagen.fit(x_train)

    # Fit the model on the batches generated by datagen.flow().
    model.fit_generator(datagen.flow(x_train, y_train,
                                     batch_size=batch_size),
                        epochs=epochs,
                        validation_data=(x_test, y_test),
                        workers=4)

# Save model and weights
if not os.path.isdir(save_dir):
    os.makedirs(save_dir)
model_path = os.path.join(save_dir, model_name)
model.save(model_path)
print('Saved trained model at %s ' % model_path)

# Score trained model.
scores = model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])

Ответ на Python Ide 3.6.8:

Python 3.6.8 (tags/v3.6.8:3c6b436a57, Dec 24 2018, 00:16:47) [MSC v.1916 64 

bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license()" for more information.
>>> 
======================== RESTART: D:\TrainTheModel.py ========================
Using TensorFlow backend.
x_train shape: (50000, 32, 32, 3)
50000 train samples
10000 test samples
Using real-time data augmentation.
Epoch 1/100

=============================== RESTART: Shell ===============================
>>> 

1 Ответ

0 голосов
/ 09 февраля 2019

Я исправил твои ошибки.Если вы используете TensorFlow в качестве бэкэнда, лучше использовать Keras из библиотек TensorFlow.

# Train a simple deep CNN on the CIFAR10 small images dataset.
# It gets to 75% validation accuracy in 25 epochs, and 79% after 50 epochs.
# (it's still underfitting at that point, though).


from __future__ import print_function
from tensorflow.keras.utils import to_categorical
from tensorflow.python.keras import optimizers
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten
from tensorflow.keras.layers import Conv2D, MaxPooling2D
import os

batch_size = 32
num_classes = 10
epochs = 100
data_augmentation = True
num_predictions = 20
save_dir = os.path.join(os.getcwd(), 'saved_models')
model_name = 'keras_cifar10_trained_model.h5'

# The data, split between train and test sets:
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

# Convert class vectors to binary class matrices.
y_train = to_categorical(y_train, num_classes)
y_test = to_categorical(y_test, num_classes)

model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same',
                 input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))

# initiate RMSprop optimizer
opt = optimizers.rmsprop(lr=0.0001, decay=1e-6)

# Let's train the model using RMSprop
model.compile(loss='categorical_crossentropy',
              optimizer=opt,
              metrics=['accuracy'])

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255

if not data_augmentation:
    print('Not using data augmentation.')
    model.fit(x_train, y_train,
              batch_size=batch_size,
              epochs=epochs,
              validation_data=(x_test, y_test),
              shuffle=True)
else:
    print('Using real-time data augmentation.')
    # This will do preprocessing and realtime data augmentation:
    datagen = ImageDataGenerator(
        featurewise_center=False,  # set input mean to 0 over the dataset
        samplewise_center=False,  # set each sample mean to 0
        featurewise_std_normalization=False,  # divide inputs by std of the dataset
        samplewise_std_normalization=False,  # divide each input by its std
        zca_whitening=False,  # apply ZCA whitening
        zca_epsilon=1e-06,  # epsilon for ZCA whitening
        rotation_range=0,  # randomly rotate images in the range (degrees, 0 to 180)
        # randomly shift images horizontally (fraction of total width)
        width_shift_range=0.1,
        # randomly shift images vertically (fraction of total height)
        height_shift_range=0.1,
        shear_range=0.,  # set range for random shear
        zoom_range=0.,  # set range for random zoom
        channel_shift_range=0.,  # set range for random channel shifts
        # set mode for filling points outside the input boundaries
        fill_mode='nearest',
        cval=0.,  # value used for fill_mode = "constant"
        horizontal_flip=True,  # randomly flip images
        vertical_flip=False,  # randomly flip images
        # set rescaling factor (applied before any other transformation)
        rescale=None,
        # set function that will be applied on each input
        preprocessing_function=None,
        # image data format, either "channels_first" or "channels_last"
        data_format=None,
        # fraction of images reserved for validation (strictly between 0 and 1)
        validation_split=0.0)

    # Compute quantities required for feature-wise normalization
    # (std, mean, and principal components if ZCA whitening is applied).
    datagen.fit(x_train)

    # Fit the model on the batches generated by datagen.flow().
    model.fit_generator(datagen.flow(x_train, y_train,
                                     batch_size=batch_size),
                        epochs=epochs,
                        validation_data=(x_test, y_test),
                        workers=4)

# Save model and weights
if not os.path.isdir(save_dir):
    os.makedirs(save_dir)
model_path = os.path.join(save_dir, model_name)
model.save(model_path)
print('Saved trained model at %s ' % model_path)

# Score trained model.
scores = model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])

Ответ (Для теста я использую только 2 эпохи):

x_train shape: (50000, 32, 32, 3)
50000 train samples
10000 test samples
Using real-time data augmentation.
Epoch 1/2
2019-02-09 16:26:13.219359: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1432] Found device 0 with properties: 
name: GeForce GTX 750 major: 5 minor: 0 memoryClockRate(GHz): 1.137
pciBusID: 0000:04:00.0
totalMemory: 1.95GiB freeMemory: 1.32GiB
2019-02-09 16:26:13.219405: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1511] Adding visible gpu devices: 0
2019-02-09 16:26:13.550797: I tensorflow/core/common_runtime/gpu/gpu_device.cc:982] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-02-09 16:26:13.550848: I tensorflow/core/common_runtime/gpu/gpu_device.cc:988]      0 
2019-02-09 16:26:13.550865: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 0:   N 
2019-02-09 16:26:13.551055: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 1059 MB memory) -> physical GPU (device: 0, name: GeForce GTX 750, pci bus id: 0000:04:00.0, compute capability: 5.0)
1563/1563 [==============================] - 44s 28ms/step - loss: 1.8483 - acc: 0.3220 - val_loss: 1.5551 - val_acc: 0.4414
Epoch 2/2
1563/1563 [==============================] - 42s 27ms/step - loss: 1.5651 - acc: 0.4263 - val_loss: 1.3814 - val_acc: 0.5065
Saved trained model at /home/mid/Documents/saved_models/keras_cifar10_trained_model.h5 
10000/10000 [==============================] - 2s 189us/step
Test loss: 1.3814242065429687
Test accuracy: 0.5065
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...