Что не так со связанным решением?Это кажется довольно простым.
Позвольте мне переставить ваш набор данных, чтобы его легче было загружать в Pandas DataFrame
Time Measurement Mean Std
0 0 1 17 1.10
1 1 1 16 1.08
2 2 1 14 0.87
3 3 1 11 0.86
4 0 2 21 1.33
5 1 2 21 1.34
6 2 2 21 1.35
7 3 2 21 1.33
for i, m in df.groupby("Measurement"):
ax.plot(m.Time, m.Mean)
ax.fill_between(m.Time, m.Mean - m.Std, m.Mean + m.Std, alpha=0.35)
А вот результат с некоторыми случайно сгенерированными данными:
РЕДАКТИРОВАТЬ
Поскольку проблема, очевидно, заключается в переборе вашего конкретного формата данных, позвольте мне показать, как вы могли бы это сделать (я новичок в pandas
, так что может бытьлучшие способы).Если я правильно понял ваш скриншот, у вас должно быть что-то вроде:
Measurement 1 2
Mean Std Mean Std
Time
0 17 1.10 21 1.33
1 16 1.08 21 1.34
2 14 0.87 21 1.35
3 11 0.86 21 1.33
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 4 entries, 0 to 3
Data columns (total 4 columns):
(1, Mean) 4 non-null int64
(1, Std) 4 non-null float64
(2, Mean) 4 non-null int64
(2, Std) 4 non-null float64
dtypes: float64(2), int64(2)
memory usage: 160.0 bytes
df.columns
MultiIndex(levels=[[1, 2], [u'Mean', u'Std']],
labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=[u'Measurement', None])
И вы должны иметь возможность перебрать его и получить тот же график:
for i, m in df.groupby("Measurement"):
ax.plot(m["Time"], m['Mean'])
ax.fill_between(m["Time"],
m['Mean'] - m['Std'],
m['Mean'] + m['Std'], alpha=0.35)
Или вы могли бы перекомпоноватьв формате выше с
(df.stack("Measurement") # stack "Measurement" columns row by row
.reset_index() # make "Time" a normal column, add a new index
.sort_values("Measurement") # group values from the same Measurement
.reset_index(drop=True)) # drop sorted index and make a new one