попробуй:
>>> df1 = pd.DataFrame({'A':['-0.8', '-0.1', '0.7'],
... 'B':['-2.8', '-0.9', '-3.3'],
... 'C':['-0.3', '0.2', '-1.1'],
... 'D':['-0.1', '-0.7', '-0.4']})
>>>
>>> df2 = pd.DataFrame({'A':['1.4', '1.6', '-1.4'],
... 'B':['-0.7', '1.4', '0.2'],
... 'C':['1.5', '1.4', '-1.7'],
... 'D':['-1.3', '0.2', '0.7']})
>>>
>>> df3 = pd.DataFrame({'A':['0.3', '0.2', '-0.3'],
... 'B':['-0.5', '-0.5', '0.7'],
... 'C':['-1.6', '-1.1', '-1.0'],
... 'D':['-0.8', '1.6', '1.0']})
>>> df=pd.concat([df1,df2,df3],ignore_index=True)
>>> print(df)
A B C D
0 -0.8 -2.8 -0.3 -0.1
1 -0.1 -0.9 0.2 -0.7
2 0.7 -3.3 -1.1 -0.4
3 1.4 -0.7 1.5 -1.3
4 1.6 1.4 1.4 0.2
5 -1.4 0.2 -1.7 0.7
6 0.3 -0.5 -1.6 -0.8
7 0.2 -0.5 -1.1 1.6
8 -0.3 0.7 -1.0 1.0
ИЛИ
df=pd.concat([df1,df2,df3], axis=0, join='outer', ignore_index=True)
Примечание:
axis: whether we will concatenate along rows (0) or columns (1)
join: can be set to inner, outer, left, or right. by using outer its sort it's lexicographically
ignore_index: whether or not the original row labels from should be retained, by default False ,If True, do not use the index labels.