Примечание. Весь код для автономного примера, воспроизводящего мою проблему, можно найти ниже.
У меня есть экземпляр tf.keras.models.Model (), и я хотел бы обучить его с помощью пользовательскогонизкоуровневый учебный цикл API TensorFlow.В рамках этого цикла обучения мне нужно убедиться, что мой пользовательский цикл обучения обновляет все переменные с состоянием из типов слоев, таких как tf.keras.layers.BatchNormalization
.Чтобы это произошло, я понимаю из этого ответа Франсуа Шоле, что мне нужно оценивать model.updates
на каждом этапе обучения.
Проблема в том, что это работает, когда вы кормите своегообучение данных для модели с использованием feed_dict
, но это не работает, когда вы используете tf.data.Dataset
объект.
Рассмотрим следующий абстрактный пример (вы можете найти конкретный пример, чтобы воспроизвести проблему ниже):
model = tf.keras.models.Model(...) # Some tf.keras model
dataset = tf.data.Dataset.from_tensor_slices(...) # Some tf.data.Dataset
iterator = dataset.make_one_shot_iterator()
features, labels = iterator.get_next()
model_output = model(features)
with tf.Session() as sess:
ret = sess.run(model.updates)
Этот вызов sess.run()
выдает ошибку
InvalidArgumentError: You must feed a value for placeholder tensor 'input_1' with dtype float and shape [?,224,224,3]
Эта ошибка, очевидно, не должна возникать.Мне не нужно указывать значение для заполнителя input_1
, потому что я вызываю свою модель для tf.data.Dataset
, а не для ввода входных данных в заполнитель через feed_dict
.
Что можетЯ делаю, чтобы сделать эту работу?
Вот полностью воспроизводимый пример.Это простой классификатор изображений, обучаемый на Caltech256 (загрузите файлы TFRecord, используя ссылку внизу этого поста):
import tensorflow as tf
from tqdm import trange
import sys
import glob
import os
sess = tf.Session()
tf.keras.backend.set_session(sess)
num_classes = 257
image_size = (224, 224, 3)
# Build a simple CNN with BatchNorm layers.
input_tensor = tf.keras.layers.Input(shape=image_size)
x = tf.keras.layers.Conv2D(64, (3,3), strides=(2,2), kernel_initializer='he_normal')(input_tensor)
x = tf.keras.layers.BatchNormalization(axis=3)(x)
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.Conv2D(64, (3,3), strides=(2,2), kernel_initializer='he_normal')(x)
x = tf.keras.layers.BatchNormalization(axis=3)(x)
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.Conv2D(128, (3,3), strides=(2,2), kernel_initializer='he_normal')(x)
x = tf.keras.layers.BatchNormalization(axis=3)(x)
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.Conv2D(256, (3,3), strides=(2,2), kernel_initializer='he_normal')(x)
x = tf.keras.layers.BatchNormalization(axis=3)(x)
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.GlobalAveragePooling2D()(x)
x = tf.keras.layers.Dense(num_classes, activation='softmax', kernel_initializer='he_normal')(x)
model = tf.keras.models.Model(input_tensor, x)
# We'll monitor whether the moving mean and moving variance of the first BatchNorm layer is being updated as it should.
moving_mean = tf.reduce_mean(model.layers[2].moving_mean)
moving_variance = tf.reduce_mean(model.layers[2].moving_variance)
# Build a tf.data.Dataset from TFRecords.
tfrecord_directory = '/path/to/the/tfrecord/files/'
tfrecord_filennames = glob.glob(os.path.join(tfrecord_directory, '*.tfrecord'))
feature_schema = {'image': tf.FixedLenFeature([], tf.string),
'filename': tf.FixedLenFeature([], tf.string),
'label': tf.FixedLenFeature([], tf.int64)}
dataset = tf.data.Dataset.from_tensor_slices(tfrecord_filennames)
dataset = dataset.shuffle(len(tfrecord_filennames)) # Shuffle the TFRecord file names.
dataset = dataset.flat_map(lambda filename: tf.data.TFRecordDataset(filename))
dataset = dataset.map(lambda single_example_proto: tf.parse_single_example(single_example_proto, feature_schema)) # Deserialize tf.Example objects.
dataset = dataset.map(lambda sample: (sample['image'], sample['label']))
dataset = dataset.map(lambda image, label: (tf.image.decode_jpeg(image, channels=3), label)) # Decode JPEG images.
dataset = dataset.map(lambda image, label: (tf.image.resize_image_with_pad(image, target_height=image_size[0], target_width=image_size[1]), label))
dataset = dataset.map(lambda image, label: (tf.image.per_image_standardization(image), label))
dataset = dataset.map(lambda image, label: (image, tf.one_hot(indices=label, depth=num_classes))) # Convert labels to one-hot format.
dataset = dataset.shuffle(buffer_size=10000)
dataset = dataset.repeat()
dataset = dataset.batch(32)
iterator = dataset.make_one_shot_iterator()
batch_features, batch_labels = iterator.get_next()
# Build the training-relevant part of the graph.
model_output = model(batch_features)
loss = tf.reduce_mean(tf.keras.backend.categorical_crossentropy(target=batch_labels, output=model_output, from_logits=False))
train_step = tf.train.AdamOptimizer().minimize(loss)
# The next block is for the metrics.
with tf.variable_scope('metrics') as scope:
predictions_argmax = tf.argmax(model_output, axis=-1, output_type=tf.int64)
labels_argmax = tf.argmax(batch_labels, axis=-1, output_type=tf.int64)
mean_loss_value, mean_loss_update_op = tf.metrics.mean(loss)
acc_value, acc_update_op = tf.metrics.accuracy(labels=labels_argmax, predictions=predictions_argmax)
local_metric_vars = tf.contrib.framework.get_variables(scope=scope, collection=tf.GraphKeys.LOCAL_VARIABLES)
metrics_reset_op = tf.variables_initializer(var_list=local_metric_vars, name='metrics_reset_op')
# Run the training.
epochs = 3
steps_per_epoch = 1000
fetch_list = [mean_loss_value,
acc_value,
moving_mean,
moving_variance,
train_step,
mean_loss_update_op,
acc_update_op] + model.updates
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
with sess.as_default():
for epoch in range(1, epochs+1):
tr = trange(steps_per_epoch, file=sys.stdout)
tr.set_description('Epoch {}/{}'.format(epoch, epochs))
sess.run(metrics_reset_op)
for train_step in tr:
ret = sess.run(fetches=fetch_list, feed_dict={tf.keras.backend.learning_phase(): 1})
tr.set_postfix(ordered_dict={'loss': ret[0],
'accuracy': ret[1],
'bn1 moving mean': ret[2],
'bn1 moving variance': ret[3]})
Запуск этого кода приводит к ошибке, описанной выше:
InvalidArgumentError: You must feed a value for placeholder tensor 'input_1' with dtype float and shape [?,224,224,3]
Очень дерьмовый обходной путь, позволяющий обойти эту проблему, состоит в том, чтобы выбрать следующий пакет с помощью отдельного вызова sess.run()
и затем передать извлеченные массивы Numpy во второй вызов sess.run()
с помощью feed_dict
.Это работает, но, очевидно, частично отрицает цель использования tf.data
API:
# Build the training-relevant part of the graph.
labels = tf.placeholder(dtype=tf.float32, shape=(None, num_classes), name='labels')
loss = tf.reduce_mean(tf.keras.backend.categorical_crossentropy(target=labels, output=model.output, from_logits=False))
train_step = tf.train.AdamOptimizer().minimize(loss)
with tf.variable_scope('metrics') as scope:
predictions_argmax = tf.argmax(model.output, axis=-1, output_type=tf.int64)
labels_argmax = tf.argmax(labels, axis=-1, output_type=tf.int64)
mean_loss_value, mean_loss_update_op = tf.metrics.mean(loss)
acc_value, acc_update_op = tf.metrics.accuracy(labels=labels_argmax, predictions=predictions_argmax)
local_metric_vars = tf.contrib.framework.get_variables(scope=scope, collection=tf.GraphKeys.LOCAL_VARIABLES)
metrics_reset_op = tf.variables_initializer(var_list=local_metric_vars, name='metrics_reset_op')
# Run the training. With BatchNorm.
epochs = 3
steps_per_epoch = 1000
fetch_list = [mean_loss_value,
acc_value,
moving_mean,
moving_variance,
train_step,
mean_loss_update_op,
acc_update_op] + model.updates
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
with sess.as_default():
for epoch in range(1, epochs+1):
tr = trange(steps_per_epoch, file=sys.stdout)
tr.set_description('Epoch {}/{}'.format(epoch, epochs))
sess.run(metrics_reset_op)
for train_step in tr:
b_images, b_labels = sess.run([batch_features, batch_labels])
ret = sess.run(fetches=fetch_list, feed_dict={tf.keras.backend.learning_phase(): 1,
model.input: b_images,
labels: b_labels})
tr.set_postfix(ordered_dict={'loss': ret[0],
'accuracy': ret[1],
'bn1 moving mean': ret[2],
'bn1 moving variance': ret[3]})
Как уже упоминалось выше, это просто плохой обходной путь.Как я могу заставить это работать должным образом?
Вы можете скачать файлы TFRecord здесь .