Как использовать plotlyProxy () в блестящем приложении с ggplotly () для ускорения рендеринга графиков - PullRequest
0 голосов
/ 04 декабря 2018

Я искал вопрос, который касается этого, но я не видел ни одного ... Я создаю блестящее приложение, которое использует ggplotly(), чтобы сделать мой график интерактивным.График является реактивным на основании пользовательского выпадающего меню selectInput().Все работает нормально, но когда я щелкаю новый параметр в раскрывающемся меню, отрисовка графика занимает много времени.Изучив это, я обнаружил эту статью, Улучшение конверсий ggplotly , которая объясняет, почему рендеринг графика занимает много времени (у меня много данных).На сайте сказано использовать plotlyProxy().Тем не менее, я испытываю трудности, пытаясь реализовать это в своем коде.Более конкретно, я не понимаю, как использовать функцию plotlyProxyInvoke(), которую вы должны использовать с ней.Буду очень признателен за любые рекомендации!

Пример данных:

  df<-structure(list(stdate = structure(c(17694, 14581, 14162, 14222, 
    17368, 16134, 17414, 13572, 17613, 15903, 14019, 12457, 15424, 
    13802, 12655, 14019, 16143, 17191, 13903, 12362, 12929, 13557, 
    16758, 13025, 15493, 16674, 15959, 15190, 16386, 11515, 12640, 
    15295, 15664, 15145, 17077, 14914, 14395, 14992, 13271, 12730
    ), class = "Date"), sttime = structure(c(35460, 42360, 32880, 
    30600, 26760, 45000, 36000, 32700, 39000, 35460, 34200, 28800, 
    26400, 33900, 39600, 29280, 34500, 28920, 31320, 34800, 37800, 
    42000, 34560, 27000, 35280, 37800, 36000, 32940, 30240, 42900, 
    28800, 35100, 35400, 39600, 30420, 41100, 34500, 32040, 37800, 
    36000), class = c("hms", "difftime"), units = "secs"), locid = c("BTMUA-SB1", 
    "BTMUA-INTAKE", "BTMUA-SA", "USGS-01394500", "BTMUA-NA", "USGS-01367785", 
    "NJDEP_BFBM-01411461", "BTMUA-SD", "NJDEP_BFBM-01443293", "BTMUA-SL", 
    "USGS-01396660", "USGS-01390400", "BTMUA-SA", "21NJDEP1-01407670", 
    "USGS-01477440", "BTMUA-NA", "BTMUA-SA", "BTMUA-SE", "BTMUA-SA", 
    "USGS-01405340", "USGS-01444990", "BTMUA-SG", "BTMUA-SB1", "USGS-01467359", 
    "BTMUA-SA", "USGS-01382000", "USGS-01412800", "BTMUA-NA", "BTMUA-SI", 
    "31DRBCSP-DRBCNJ0036", "21NJDEP1-01410230", "USGS-01465861", 
    "BTMUA-NF", "USGS-01445210", "BTMUA-NA", "USGS-01464020", "BTMUA-SL", 
    "BTMUA-SA", "USGS-01382500", "USGS-01408598"), charnam = c("Total dissolved solids", 
    "Total dissolved solids", "Total dissolved solids", "Total dissolved solids", 
    "Total dissolved solids", "Total dissolved solids", "Total dissolved solids", 
    "Total dissolved solids", "Total dissolved solids", "Total dissolved solids", 
    "Total dissolved solids", "Total dissolved solids", "Total dissolved solids", 
    "Total dissolved solids", "Total dissolved solids", "Total dissolved solids", 
    "Total dissolved solids", "Total dissolved solids", "Total dissolved solids", 
    "Total dissolved solids", "Total dissolved solids", "Total dissolved solids", 
    "Total dissolved solids", "Total dissolved solids", "Total dissolved solids", 
    "Total dissolved solids", "Total dissolved solids", "Total dissolved solids", 
    "Total dissolved solids", "Total dissolved solids", "Total dissolved solids", 
    "Total dissolved solids", "Total dissolved solids", "Total dissolved solids", 
    "Total dissolved solids", "Total dissolved solids", "Total dissolved solids", 
    "Total dissolved solids", "Total dissolved solids", "Total dissolved solids"
    ), val = c(126, 84, 97, 392, 185, 157, 62, 149.4, 274, 60, 134, 
    516, 121, 144, 143, 99, 154, 120, 96, 99, 278, 96.2, 135, 101, 
    110, 460, 147, 117, 102, 250, 75, 121, 129, 242, 172, 279, 51, 
    205, 88, 38), valunit = c("mg/l", "mg/l", "mg/l", "mg/l", "mg/l", 
    "mg/l", "mg/l", "mg/l", "mg/l", "mg/l", "mg/l", "mg/l", "mg/l", 
    "mg/l", "mg/l", "mg/l", "mg/l", "mg/l", "mg/l", "mg/l", "mg/l", 
    "mg/l", "mg/l", "mg/l", "mg/l", "mg/l", "mg/l", "mg/l", "mg/l", 
    "mg/l", "mg/l", "mg/l", "mg/l", "mg/l", "mg/l", "mg/l", "mg/l", 
    "mg/l", "mg/l", "mg/l"), HUC14 = c("02040301030050", "02040301040020", 
    "02040301030050", "02030104050040", "02040301020050", "02020007020030", 
    "02040206130020", "02040301030050", "02040105040040", "02040301030010", 
    "02030105020030", "02030103140040", "02040301030050", "02030104090040", 
    "02040202160010", "02040301020050", "02040301030050", "02040301030040", 
    "02040301030050", "02030105140020", "02040105070040", "02040301030040", 
    "02040301030050", "02040202120010", "02040301030050", "02030103040010", 
    "02040206080040", "02040301020050", "02040301030030", "02040105050050", 
    "02040301200110", "02040202060040", "02040301020020", "02040105080020", 
    "02040301020050", "02040105240060", "02040301030010", "02040301030050", 
    "02030103050060", "02040301080050"), WMA = c("13", "13", "13", 
    "7", "13", "2", "17", "13", "1", "13", "8", "4", "13", "12", 
    "18", "13", "13", "13", "13", "9", "1", "13", "13", "18", "13", 
    "6", "17", "13", "13", "1", "14", "19", "13", "1", "13", "11", 
    "13", "13", "3", "13"), year = c(2018L, 2009L, 2008L, 2008L, 
    2017L, 2014L, 2017L, 2007L, 2018L, 2013L, 2008L, 2004L, 2012L, 
    2007L, 2004L, 2008L, 2014L, 2017L, 2008L, 2003L, 2005L, 2007L, 
    2015L, 2005L, 2012L, 2015L, 2013L, 2011L, 2014L, 2001L, 2004L, 
    2011L, 2012L, 2011L, 2016L, 2010L, 2009L, 2011L, 2006L, 2004L
    )), .Names = c("stdate", "sttime", "locid", "charnam", "val", 
    "valunit", "HUC14", "WMA", "year"), row.names = c(NA, -40L), class = c("tbl_df", 
    "tbl", "data.frame"))

UI

library(shiny)
library(shinydashboard)
library(tidyverse)
library(plotly)

header<-dashboardHeader(title="test app")
sidebar<-dashboardSidebar(selectInput("huc","Please Select HUC14:",choices=df$HUC14,selected = df$HUC14))
body<- dashboardBody(plotlyOutput("plot"))

ui <- dashboardPage(header = header,
                   sidebar = sidebar,
                   body = body)

Сервер:

server<- function(input,output,session) {
  df_reac<-reactive({
    df%>%
      filter(HUC14 == input$huc)
  })

  output$plot<-renderPlotly({
    ggplot(df_reac(), aes(x = year, y = val)) +
      geom_point(aes(color="Discrete"),size=3) +
      geom_hline(aes(yintercept = 500,color="Freshwater Aquatic Life Criteria\nfor TDS = 500 mg/L"),size=1.3)+
      xlab("Year") + ylab(" TDS Concentration (mg/L)")})


  observeEvent(input$huc,{
    plotlyProxy("plot",session)%>%
      plotlyProxyInvoke("relayout")
  })
}

shinyApp(ui,server)

Данные, которые я на самом деле использую, - это более 300 000 наблюдений, а приложение намного сложнее ... но я буду использовать его, чтобы оно было коротким и приятным.Я надеюсь, что этого достаточно для воспроизводимого примера. Если нет, дайте мне знать!

1 Ответ

0 голосов
/ 19 декабря 2018

В блестящем приложении ниже показано, как использовать plotlyProxyInvoke с методами relayout, restyle, addTraces, deleteTraces и moveTraces.

У вас действительно не было сюжетаобъект, поскольку вы не обернули объект ggplot внутри вызова ggplotly.Я также включил функцию highlight_key, хотя в этом примере она не является необходимой.

  • Реле происходит при увеличении, например, что изменитЗаголовок и yaxis.range от 0 до 500. Вы можете найти более интересный метод ретрансляции здесь .

  • Restyle 1 метод происходит, когдаВы нажимаете на оранжевую точку, которая изменит непрозрачность на 0,1, цвет маркера на синий, а цвет линии на оранжевый.

  • Restyle 2 происходит, когда выиспользуйте Box / Lasso-Select, который изменит непрозрачность обратно на 1, цвет маркера на красный, а цвет линии на синий.

  • AddTraces происходит, когдазависание над точкой (или дополнительными трассами), которая добавит случайную трассировку.

  • DeleteTraces происходит при нажатии кнопки (delete), которая удалитпоследняя трассировка в массиве данных.

  • MoveTraces происходитпри нажатии кнопки (move), которая изменит порядок следов с индексами 0 и 1 и добавит их в конец массива данных.

Для просмотра всех доступных методовкоторый может быть вызван, введите:

plotly:::plotlyjs_methods()

[1] "restyle"       "relayout"      "update"        "addTraces"     "deleteTraces"  "moveTraces"    "extendTraces"  "prependTraces"               
[9] "purge"         "toImage"       "downloadImage" "animate"

Для более подробного объяснения, посмотрите Ссылка Plotly и этот глянцевыйApp-пример .


ui.R

library(shiny)
library(shinydashboard)
library(tidyverse)
library(plotly)

header<-dashboardHeader(title="test app")
sidebar<-dashboardSidebar(selectInput("huc","Please Select HUC14:",choices=df$HUC14,selected = df$HUC14),
                          actionButton("delete", "Delete the last trace"),
                          actionButton("move", " Move traces"))
body<- dashboardBody(plotlyOutput("plot"))

ui <- dashboardPage(header = header,
                   sidebar = sidebar,
                   body = body)

server.R

server<- function(input,output,session) {
  df_reac<-reactive({
    df%>%
      filter(HUC14 == input$huc)
  })

  output$plot<-renderPlotly({
    key = highlight_key(df_reac())
    p <- ggplot(key, aes(x = year, y = val)) +
      geom_point(aes(color="Discrete"),size=3) +
      geom_hline(aes(yintercept = 500,color="Freshwater Aquatic Life Criteria\nfor TDS = 500 mg/L"),size=1.3)+
      xlab("Year") + ylab(" TDS Concentration (mg/L)")

    ggplotly(p)
  })

  observeEvent(event_data("plotly_relayout"), {
    print("relayout")
    plotlyProxy("plot", session) %>%
      plotlyProxyInvoke("relayout", list(title = 'New title', 
                                         yaxis.range = list(0,500)))
  })

  observeEvent(event_data("plotly_click"), {
    print("restyle 1")
    plotlyProxy("plot", session) %>%
      plotlyProxyInvoke("restyle", list(opacity=0.1, marker.color="blue", line.color="orange"))
  })

  observeEvent(event_data("plotly_selected"), {
    print("restyle 2")
    plotlyProxy("plot", session) %>%
      plotlyProxyInvoke("restyle", list(opacity=1, marker.color="red", line.color="blue"))
  })

  observeEvent(event_data("plotly_hover"), {
    print("addTraces")
    time = as.numeric(format(df_reac()$stdate, "%Y"))
    plotlyProxy("plot", session) %>%
      plotlyProxyInvoke("addTraces", list(y = as.list(sort(sample(100:500, 3, F))), 
                                          x = as.list(sort(sample(seq(time-0.05,time+0.05, by = 0.02), 3, F)))))
  })

  observeEvent(input$delete, {
    print("deleteTraces")
    plotlyProxy("plot", session) %>%
      plotlyProxyInvoke("deleteTraces", list(-1))
  })

  observeEvent(input$move, {
    print("moveTraces")
    plotlyProxy("plot", session) %>%
      plotlyProxyInvoke("moveTraces", list(0, 1))
  }) 

}

shinyApp(ui,server)
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...