В РИ хотят получить коэффициенты корреляции, сравнивая 2 переменные, в то же время сохраняя филогенетический сигнал.
Первоначальный способ, которым я думал сделать это, неэффективен в вычислительном отношении, и я думаю, что есть гораздо более простой способ, но у меня нет навыков в R, чтобы это сделать.
У меня есть CSV-файл, который выглядит следующим образом:
+-------------------------------+-----+----------+---------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+---------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+
| Species | OGT | Domain | A | C | D | E | F | G | H | I | K | L | M | N | P | Q | R | S | T | V | W | Y |
+-------------------------------+-----+----------+---------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+---------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+
| Aeropyrum pernix | 95 | Archaea | 9.7659115711 | 0.6720465616 | 4.3895390781 | 7.6501943794 | 2.9344881615 | 8.8666657183 | 1.5011817208 | 5.6901432494 | 4.1428307243 | 11.0604191603 | 2.21143353 | 1.9387130928 | 5.1038552753 | 1.6855017182 | 7.7664358772 | 6.266067034 | 4.2052190807 | 9.2692433532 | 1.318690698 | 3.5614200159 |
| Argobacterium fabrum | 26 | Bacteria | 11.5698896021 | 0.7985475923 | 5.5884500155 | 5.8165463343 | 4.0512504104 | 8.2643271309 | 2.0116736244 | 5.7962804605 | 3.8931525401 | 9.9250463349 | 2.5980609708 | 2.9846761128 | 4.7828063605 | 3.1262365491 | 6.5684282943 | 5.9454781844 | 5.3740045968 | 7.3382308193 | 1.2519739683 | 2.3149400984 |
| Anaeromyxobacter dehalogenans | 27 | Bacteria | 16.0337898849 | 0.8860252895 | 5.1368827707 | 6.1864992608 | 2.9730203513 | 9.3167603253 | 1.9360386851 | 2.940143349 | 2.3473650439 | 10.898494736 | 1.6343905351 | 1.5247123262 | 6.3580285706 | 2.4715303021 | 9.2639057482 | 4.1890063803 | 4.3992339725 | 8.3885969061 | 1.2890166336 | 1.8265589289 |
| Aquifex aeolicus | 85 | Bacteria | 5.8730327277 | 0.795341216 | 4.3287799008 | 9.6746388172 | 5.1386954322 | 6.7148035486 | 1.5438364179 | 7.3358775924 | 9.4641440609 | 10.5736658776 | 1.9263080969 | 3.6183861236 | 4.0518679067 | 2.0493569604 | 4.9229955632 | 4.7976564501 | 4.2005259246 | 7.9169763709 | 0.9292167138 | 4.1438942987 |
| Archaeoglobus fulgidus | 83 | Archaea | 7.8742687687 | 1.1695110027 | 4.9165979364 | 8.9548767369 | 4.568636662 | 7.2640358917 | 1.4998752909 | 7.2472039919 | 6.8957233203 | 9.4826333048 | 2.6014466253 | 3.206476915 | 3.8419576418 | 1.7789787933 | 5.7572748236 | 5.4763351139 | 4.1490633048 | 8.6330814159 | 1.0325605451 | 3.6494619148 |
+-------------------------------+-----+----------+---------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+---------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+--------------+
Что я хочу сделать, это для каждой возможной комбинациипроцентов в пределах 20 однобуквенных столбцов (аминокислоты, то есть 10 миллионов комбинаций).Вычислять корреляцию между каждой другой комбинацией и переменной OGT в CSV .... (при сохранении филогенетического сигнала)
Мой текущий код такой:
library(parallel)
library(dplyr)
library(tidyr)
library(magrittr)
library(ape)
library(geiger)
library(caper)
taxonomynex <- read.nexus("taxonomyforzeldospecies.nex")
zeldodata <- read.csv("COMPLETECOPYFORR.csv")
Species <- dput(zeldodata)
SpeciesLong <-
Species %>%
gather(protein, proportion,
A:Y) %>%
arrange(Species)
S <- unique(SpeciesLong$protein)
Scombi <- unlist(lapply(seq_along(S),
function(x) combn(S, x, FUN = paste0, collapse = "")))
joint_protein <- function(protein_combo, data){
sum(data$proportion[vapply(data$protein,
grepl,
logical(1),
protein_combo)])
}
SplitSpecies <-
split(SpeciesLong,
SpeciesLong$Species)
cl <- makeCluster(detectCores() - 1)
clusterExport(cl, c("Scombi", "joint_protein"))
SpeciesAggregate <-
parLapply(cl,
X = SplitSpecies,
fun = function(data){
X <- lapply(Scombi,
joint_protein,
data)
names(X) <- Scombi
as.data.frame(X)
})
Species <- cbind(Species, SpeciesAggregate)
`
Который пытается ввести каждую комбинацию в память, а затем вычислить сумму каждой пропорции каждой из кислот, но это займет целую вечность и завершится сбоем до завершения.
Я думаю, что это будетлучше ввести коэффициенты корреляции в вектор, а затем просто распечатать относительные коэффициенты каждой отдельной комбинации для каждого вида, но я не знаю лучшего способа сделать это в R.
Я также стремлюсь сохранить филогенетический сигнал, используя пакет обезьян, используя что-то вроде этого:
pglsModel <- gls(OGT ~ AminoAcidCombination, correlation = corBrownian(phy = taxonomynex),
data = zeldodata, method = "ML")
summary(pglsModel)
Извиняюсь за то, что неясно, если у кого-то есть какой-либо совет, очень признателен!1023 * Редактировать: Ссылка на таксономию forzeldospecies.nex
Вывод из dput (Zeldodata):
1 Species OGT Domain A C D E F G H I K L M N P Q R S T V W Y
------------------------------- ----- ---------- --------------- -------------- -------------- -------------- -------------- -------------- -------------- -------------- -------------- --------------- -------------- -------------- -------------- -------------- -------------- -------------- -------------- -------------- -------------- --------------
2 Aeropyrum pernix 95 Archaea 9.7659115711 0.6720465616 4.3895390781 7.6501943794 2.9344881615 8.8666657183 1.5011817208 5.6901432494 4.1428307243 11.0604191603 2.21143353 1.9387130928 5.1038552753 1.6855017182 7.7664358772 6.266067034 4.2052190807 9.2692433532 1.318690698 3.5614200159
3 Argobacterium fabrum 26 Bacteria 11.5698896021 0.7985475923 5.5884500155 5.8165463343 4.0512504104 8.2643271309 2.0116736244 5.7962804605 3.8931525401 9.9250463349 2.5980609708 2.9846761128 4.7828063605 3.1262365491 6.5684282943 5.9454781844 5.3740045968 7.3382308193 1.2519739683 2.3149400984
4 Anaeromyxobacter dehalogenans 27 Bacteria 16.0337898849 0.8860252895 5.1368827707 6.1864992608 2.9730203513 9.3167603253 1.9360386851 2.940143349 2.3473650439 10.898494736 1.6343905351 1.5247123262 6.3580285706 2.4715303021 9.2639057482 4.1890063803 4.3992339725 8.3885969061 1.2890166336 1.8265589289
5 Aquifex aeolicus 85 Bacteria 5.8730327277 0.795341216 4.3287799008 9.6746388172 5.1386954322 6.7148035486 1.5438364179 7.3358775924 9.4641440609 10.5736658776 1.9263080969 3.6183861236 4.0518679067 2.0493569604 4.9229955632 4.7976564501 4.2005259246 7.9169763709 0.9292167138 4.1438942987
6 Archaeoglobus fulgidus 83 Archaea 7.8742687687 1.1695110027 4.9165979364 8.9548767369 4.568636662 7.2640358917 1.4998752909 7.2472039919 6.8957233203 9.4826333048 2.6014466253 3.206476915 3.8419576418 1.7789787933 5.7572748236 5.4763351139 4.1490633048 8.6330814159 1.0325605451 3.6494619148