Во время работы над SO Вопрос я столкнулся с ошибкой предупреждения, используя loc
, точные детали приведены ниже:
Образцы DataFrame:
Первый dataFrame df1:
>>> data1 = {'Sample': ['Sample_A','Sample_D', 'Sample_E'],
... 'Location': ['Bangladesh', 'Myanmar', 'Thailand'],
... 'Year':[2012, 2014, 2015]}
>>> df1 = pd.DataFrame(data1)
>>> df1.set_index('Sample')
Location Year
Sample
Sample_A Bangladesh 2012
Sample_D Myanmar 2014
Sample_E Thailand 2015
Второй кадр данных df2:
>>> data2 = {'Num': ['Value_1','Value_2','Value_3','Value_4','Value_5'],
... 'Sample_A': [0,1,0,0,1],
... 'Sample_B':[0,0,1,0,0],
... 'Sample_C':[1,0,0,0,1],
... 'Sample_D':[0,0,1,1,0]}
>>> df2 = pd.DataFrame(data2)
>>> df2.set_index('Num')
Sample_A Sample_B Sample_C Sample_D
Num
Value_1 0 0 1 0
Value_2 1 0 0 0
Value_3 0 1 0 1
Value_4 0 0 0 1
Value_5 1 0 1 0
>>> samples
['Sample_A', 'Sample_D', 'Sample_E']
Пока я беру samples
, чтобы сохранить столбец из него следующим образом, он работает, но прив то же время выдает предупреждение ..
>>> df3 = df2.loc[:, samples]
>>> df3
Sample_A Sample_D Sample_E
0 0 0 NaN
1 1 0 NaN
2 0 1 NaN
3 0 1 NaN
4 1 0 NaN
Предупреждения:
indexing.py:1472: FutureWarning:
Passing list-likes to .loc or [] with any missing label will raise
KeyError in the future, you can use .reindex() as an alternative.
See the documentation here:
https://pandas.pydata.org/pandas-docs/stable/indexing.html#deprecate-loc-reindex-listlike
return self._getitem_tuple(key)
Хотелось бы узнать о том, как справиться с этим лучше!