Если вы хотите использовать вывод с Spark ML, лучше всего использовать CountVectorizer
:
from pyspark.ml.feature import CountVectorizer
# Add binary=True if needed
df_enc = (CountVectorizer(inputCol="name", outputCol="name_vector")
.fit(df)
.transform(df))
df_enc.show(truncate=False)
+---------+---+-------------------------+
|name |id |name_vector |
+---------+---+-------------------------+
|[a, b, c]|1 |(4,[0,1,2],[1.0,1.0,1.0])|
|[a, c] |2 |(4,[0,1],[1.0,1.0]) |
|[d] |3 |(4,[3],[1.0]) |
|[b, c] |4 |(4,[1,2],[1.0,1.0]) |
|[a, b, d]|5 |(4,[0,2,3],[1.0,1.0,1.0])|
+---------+---+-------------------------+
В противном случае собрать различные значения:
from pyspark.sql.functions import array_contains, col, explode
names = [
x[0] for x in
df.select(explode("name").alias("name")).distinct().orderBy("name").collect()]
и выбратьстолбцы с array_contains
:
df_sep = df.select("*", *[
array_contains("name", name).alias("name_{}".format(name)).cast("integer")
for name in names]
)
df_sep.show()
+---------+---+------+------+------+------+
| name| id|name_a|name_b|name_c|name_d|
+---------+---+------+------+------+------+
|[a, b, c]| 1| 1| 1| 1| 0|
| [a, c]| 2| 1| 0| 1| 0|
| [d]| 3| 0| 0| 0| 1|
| [b, c]| 4| 0| 1| 1| 0|
|[a, b, d]| 5| 1| 1| 0| 1|
+---------+---+------+------+------+------+