Похоже на проблему морского происхождения.При использовании чистого matplotlib
im = ax.imshow(np.ma.masked_array(corr_matrix, mask), cmap=cmap, norm=norm)
fig.colorbar(im, ticks=[-1, -0.5, -0.3, -0.1, +0.1, +0.3, +0.5, +1])
результат будет таким, как ожидалось.
![enter image description here](https://i.stack.imgur.com/P48Ut.png)
Чтобы воспроизвести точный вид графика морского побережьятогда немного больше работы,
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import colors
corr_matrix = np.array([[0,0,0,0,0],
[-.11,0,0,0,0],
[-.1,.34,0,0,0],
[-0.06,-.1,-.06,0,0],
[-0.32,-.08,-.01,.16,0]])
cmap = colors.ListedColormap(["navy", "royalblue", "lightsteelblue",
"beige", "peachpuff", "salmon", "darkred"])
bounds = [-1, -0.5, -0.3, -0.1, 0.1, 0.3, 0.5, 1]
norm = colors.BoundaryNorm(bounds, cmap.N)
mask = np.zeros_like(corr_matrix, dtype=np.bool)
mask[np.triu_indices_from(mask)] = True
corr_matrix_masked = np.ma.masked_array(corr_matrix, mask)
fig, ax = plt.subplots()
im = ax.imshow(corr_matrix_masked, cmap=cmap, norm=norm)
fig.colorbar(im, ticks=[-1, -0.5, -0.3, -0.1, +0.1, +0.3, +0.5, +1])
for i in range(corr_matrix_masked.shape[0]):
for j in range(corr_matrix_masked.shape[1]):
if not corr_matrix_masked.mask[i,j]:
val = corr_matrix_masked[i,j]
color = {True:"w", False:"k"}[np.abs(val) > 0.3]
ax.text(j,i,"{:.4f}".format(corr_matrix_masked[i,j]),
ha="center", va="center", color=color)
ax.set_title('Correllation Matrix')
for k,v in ax.spines.items():
v.set_visible(False)
plt.show()
![enter image description here](https://i.stack.imgur.com/v2FVA.png)