Керас гугл word2vec CNN модель InvalidArgumentError - PullRequest
0 голосов
/ 05 декабря 2018

Я построил модель классификации текста для несбалансированных данных классификации классов.Вместо использования вектора слов keras я использовал встраивание, используя вектор googlenews word2vec в качестве базовой линии в слое встраивания.

import pandas as pd
from keras.models import Sequential, Model
from keras.layers import Dense, Dropout, Activation, Embedding, SpatialDropout1D, Bidirectional, LSTM, Input, concatenate, Conv1D, GlobalMaxPooling1D, BatchNormalization


from keras.optimizers import SGD, Adam
from sklearn.model_selection import train_test_split

from keras.preprocessing.text import Tokenizer
from keras.preprocessing import sequence
import keras.backend as K
from keras import backend as K
from keras import metrics

import numpy as np
from itertools import chain
from collections import Counter
from sklearn.utils import shuffle

import nltk
import gensim
from gensim.models import KeyedVectors

from sklearn.utils import class_weight


dat = pd.read_csv('/home/data.csv',encoding='latin',delimiter='\t')

dat = shuffle(dat)
dat.reset_index(drop=True,inplace=True)

Поскольку это проблема дисбаланса классов, я использовал метрику f1.

def f1_metric(y_true, y_pred):
    def recall(y_true, y_pred):
        """Recall metric.

        Only computes a batch-wise average of recall.

        Computes the recall, a metric for multi-label classification of
        how many relevant items are selected.
        """
        true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
        possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
        recall = true_positives / (possible_positives + K.epsilon())
        return recall

    def precision(y_true, y_pred):
        """Precision metric.

        Only computes a batch-wise average of precision.

        Computes the precision, a metric for multi-label classification of
        how many selected items are relevant.
        """
        true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
        predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
        precision = true_positives / (predicted_positives + K.epsilon())
        return precision
    precision = precision(y_true, y_pred)
    recall = recall(y_true, y_pred)
    return 2*((precision*recall)/(precision+recall+K.epsilon()))

Я обработал текст и создал вектор слов, как показано ниже

def preprocess(dat):
    return [nltk.word_tokenize(row) for row in dat]

x_train, x_test, y_train, y_test= train_test_split(dat.text,dat.labels,test_size=0.20)

X = preprocess(x_train)
model = KeyedVectors.load_word2vec_format('/home/user/Downloads/GoogleNews-vectors-negative300.bin', binary=True,limit=100000)

Я использую эту функцию для преобразования массива текста в числовые значения из модели word2vec.

def word2idx(word):
    return model.wv.vocab[word].index

vocab_size, emdedding_size = model.wv.syn0.shape
pretrained_weights = model.wv.syn0
print(vocab_size, emdedding_size)
100000 300

Я создалматрица

max_sentence_len = 50
train_x = np.zeros([len(X), max_sentence_len], dtype=np.int32)

И заменить 0 на значения индекса из модели word2vec для соответствующих токенизированных слов, максимум до 50 слов.

for i in range(len(X)):
    for j in range(len(X[i])):
        try:
            train_x[i][j] = word2idx(X[i][j])
        except:
            pass

Я вычислил вес класса, используя функцию sklearn, так как этопроблема дисбаланса класса.

class_weights = class_weight.compute_class_weight('balanced',np.unique(y_train),y_train)

Это функция для создания модели multiConvnet.

def model_architecture(vocab_size,emdedding_size,pretrained_weights):

    # vector-space embedding: 
    n_dim = 64
    n_unique_words = 5000 
    max_review_length = 50
    pad_type = trunc_type = 'pre'
    drop_embed = 0.2 

    # convolutional layer architecture:
    n_conv_1 = n_conv_2 = n_conv_3 = n_conv_4= 256
    k_conv_1 = 3
    k_conv_2 = 2
    k_conv_3 = 4
    k_conv_4 = 5

    # dense layer architecture: 
    n_dense = 256
    dropout = 0.2

    input_layer = Input(shape=(max_review_length,), dtype='int16', name='input') # supports integers +/- 32.7k

#    embedding_layer = Embedding(n_unique_words, n_dim, input_length=max_review_length, name='embedding')(input_layer)
    embedding_layer = Embedding(input_dim=vocab_size, output_dim=emdedding_size, weights=[pretrained_weights], name='embedding')(input_layer)
    drop_embed_layer = SpatialDropout1D(drop_embed, name='drop_embed')(embedding_layer)

    conv_1 = Conv1D(n_conv_1, k_conv_1, activation='relu', name='conv_1')(drop_embed_layer)
    maxp_1 = GlobalMaxPooling1D(name='maxp_1')(conv_1)

    conv_2 = Conv1D(n_conv_2, k_conv_2, activation='relu', name='conv_2')(drop_embed_layer)
    maxp_2 = GlobalMaxPooling1D(name='maxp_2')(conv_2)

    conv_3 = Conv1D(n_conv_3, k_conv_3, activation='relu', name='conv_3')(drop_embed_layer)
    maxp_3 = GlobalMaxPooling1D(name='maxp_3')(conv_3)

    concat = concatenate([maxp_1, maxp_2, maxp_3])

    dense_layer = Dense(n_dense, activation='relu', name='dense')(concat)
    drop_dense_layer = Dropout(dropout, name='drop_dense')(dense_layer)
    dense_2 = Dense(64, activation='relu', name='dense_2')(drop_dense_layer)
    dropout_2 = Dropout(dropout, name='drop_dense_2')(dense_2)

    predictions = Dense(units=1, activation='sigmoid', name='output')(dropout_2)
    model = Model(input_layer, predictions)
    model.compile(loss='binary_crossentropy', optimizer='adam', metrics=[f1_metric])
    return model

Моя модель ниже

mod_keras = model_architecture(vocab_size,emdedding_size,pretrained_weights)

mod_keras.fit(train_x,y_train,batch_size=32,epochs=2,verbose=1,validation_split=0.2,class_weight=class_weights)

, когда я ее запускаю,я получаю ошибку ниже.

Train on 287895 samples, validate on 71974 samples
Epoch 1/2
---------------------------------------------------------------------------
InvalidArgumentError                      Traceback (most recent call last)
<ipython-input-25-fcb6fa008311> in <module>
----> 1 mod_Access.fit(train_x,y_train_Access,batch_size=32,epochs=2,verbose=1,validation_split=0.2,class_weight=class_weights)

~/.local/lib/python3.5/site-packages/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)
   1037                                         initial_epoch=initial_epoch,
   1038                                         steps_per_epoch=steps_per_epoch,
-> 1039                                         validation_steps=validation_steps)
   1040 
   1041     def evaluate(self, x=None, y=None,

~/.local/lib/python3.5/site-packages/keras/engine/training_arrays.py in fit_loop(model, f, ins, out_labels, batch_size, epochs, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch, steps_per_epoch, validation_steps)
    197                     ins_batch[i] = ins_batch[i].toarray()
    198 
--> 199                 outs = f(ins_batch)
    200                 outs = to_list(outs)
    201                 for l, o in zip(out_labels, outs):

~/.local/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py in __call__(self, inputs)
   2713                 return self._legacy_call(inputs)
   2714 
-> 2715             return self._call(inputs)
   2716         else:
   2717             if py_any(is_tensor(x) for x in inputs):

~/.local/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py in _call(self, inputs)
   2673             fetched = self._callable_fn(*array_vals, run_metadata=self.run_metadata)
   2674         else:
-> 2675             fetched = self._callable_fn(*array_vals)
   2676         return fetched[:len(self.outputs)]
   2677 

~/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py in __call__(self, *args, **kwargs)
   1437           ret = tf_session.TF_SessionRunCallable(
   1438               self._session._session, self._handle, args, status,
-> 1439               run_metadata_ptr)
   1440         if run_metadata:
   1441           proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

~/.local/lib/python3.5/site-packages/tensorflow/python/framework/errors_impl.py in __exit__(self, type_arg, value_arg, traceback_arg)
    526             None, None,
    527             compat.as_text(c_api.TF_Message(self.status.status)),
--> 528             c_api.TF_GetCode(self.status.status))
    529     # Delete the underlying status object from memory otherwise it stays alive
    530     # as there is a reference to status from this from the traceback due to

InvalidArgumentError: indices[26,0] = -3338 is not in [0, 100000)
     [[{{node embedding/embedding_lookup}} = GatherV2[Taxis=DT_INT32, Tindices=DT_INT32, Tparams=DT_FLOAT, _class=["loc:@training/Adam/Assign_2"], _device="/job:localhost/replica:0/task:0/device:CPU:0"](embedding/embeddings/read, embedding/Cast, training/Adam/gradients/embedding/embedding_lookup_grad/concat/axis)]]

Я прочитал это сообщение InvalidArgumentError (см. выше для отслеживания): индексы [1] = 10 не в [0, 10)

Согласно этому посту внужно установить словарный запас.В моем случае это именно то, что я сделал, используя параметр vocab_size.

...