Я хочу оценить торговую стратегию, учитывая сумму, которую я вкладываю в конкретную акцию.В основном, когда я вижу, что «K-класс» равен 1, я покупаю, когда я вижу, что «K-класс» равен 0, я продаю.Чтобы сделать это простым, мы можем игнорировать открытое, высокое и низкое значение.просто используйте цену закрытия для оценки.
Мы хотим перебрать всю серию, следуя 1 = покупка 0 = продажа, независимо от того, правильно это или неправильно.
Я получил панду DataFrameс серией под названием «K-Class», логическое значение, просто скажите 1 (покупка) и 0 (продажа)
С первого дня «K-класс» появляется 1, я покупаю, если второй день0, я продаю «немедленно» по цене закрытия
Как мне написать цикл for, чтобы проверить, в конце концов, вкладывать деньги и вкладывать время? (используя панд и технику питона)
Pleas feelсвободно добавить больше переменных
Я получил
invest_amount = 10000
stock_owned = 10000/ p1 #the first day appears 1, return the close price
invest_time = 0
Time Close K_Class
0 2017/03/06 31.72 0
1 2017/03/08 33.99 0
2 2017/03/09 32.02 0
3 2017/03/10 30.66 0
4 2017/03/13 30.94 1
5 2017/03/15 32.56 1
6 2017/03/17 33.31 0
7 2017/03/20 34.07 1
8 2017/03/22 34.40 0
9 2017/03/24 32.98 1
10 2017/03/27 33.26 0
11 2017/03/28 31.60 0
12 2017/03/29 30.36 0
13 2017/03/30 28.83 0
14 2017/04/11 27.01 0
15 2017/04/12 24.31 0
16 2017/04/14 24.22 0
17 2017/04/17 21.80 0
18 2017/04/18 21.20 1
19 2017/04/19 23.32 1
20 2017/04/20 24.43 0
21 2017/04/24 23.85 1
22 2017/04/26 23.97 1
23 2017/04/27 24.31 1
24 2017/04/28 23.50 1
25 2017/05/02 22.57 1
26 2017/05/03 22.67 1
27 2017/05/04 22.11 1
28 2017/05/05 21.26 1
29 2017/05/08 19.37 1
.. ... ... ...
275 2018/08/01 13.38 0
276 2018/08/03 12.49 0
277 2018/08/06 12.50 0
278 2018/08/07 12.78 0
279 2018/08/09 12.93 0
280 2018/08/10 13.15 0
281 2018/08/13 13.14 1
282 2018/08/14 13.15 0
283 2018/08/15 12.80 0
284 2018/08/17 12.29 0
285 2018/08/21 12.39 0
286 2018/08/22 12.15 0
287 2018/08/23 12.27 0
288 2018/08/24 12.31 0
289 2018/08/27 12.47 0
290 2018/08/29 12.31 0
291 2018/08/30 12.13 0
292 2018/08/31 11.69 0
293 2018/09/03 11.60 1
294 2018/09/04 11.65 0
295 2018/09/05 11.45 0
296 2018/09/07 11.42 0
297 2018/09/10 10.71 0
298 2018/09/11 10.76 1
299 2018/09/12 10.74 0
300 2018/09/13 10.85 1
301 2018/09/14 10.79 0
302 2018/09/18 10.58 1
303 2018/09/19 10.65 1
304 2018/09/21 10.73 1