Предположим, у меня есть некоторые данные, y, к которым я хотел бы привести ряд Фурье.На этой записи было опубликовано решение Mermoz с использованием сложного формата ряда и «вычисления коэффициента с помощью суммы Римана».На этом другом посте серия получена через БПФ, и записан пример.
Я пытался реализовать оба подхода (изображение и код ниже - обратите внимание, каждый раз, когда код запускается, разныеданные будут генерироваться из-за использования numpy.random.normal ), но мне интересно, почему я получаю разные результаты - подход Римана кажется «ошибочно смещенным», в то время как подход БПФ кажется «сжатым».Я также не уверен в моем определении периода "тау" для ряда.Я ценю внимание.
Я использую Spyder с Python 3.7.1 в Windows 7
Пример
import matplotlib.pyplot as plt
import numpy as np
# Assume x (independent variable) and y are the data.
# Arbitrary numerical values for question purposes:
start = 0
stop = 4
mean = 1
sigma = 2
N = 200
terms = 30 # number of terms for the Fourier series
x = np.linspace(start,stop,N,endpoint=True)
y = np.random.normal(mean, sigma, len(x))
# Fourier series
tau = (max(x)-min(x)) # assume that signal length = 1 period (tau)
# From ref 1
def cn(n):
c = y*np.exp(-1j*2*n*np.pi*x/tau)
return c.sum()/c.size
def f(x, Nh):
f = np.array([2*cn(i)*np.exp(1j*2*i*np.pi*x/tau) for i in range(1,Nh+1)])
return f.sum()
y_Fourier_1 = np.array([f(t,terms).real for t in x])
# From ref 2
Y = np.fft.fft(y)
np.put(Y, range(terms+1, len(y)), 0.0) # zero-ing coefficients above "terms"
y_Fourier_2 = np.fft.ifft(Y)
# Visualization
f, ax = plt.subplots()
ax.plot(x,y, color='lightblue', label = 'artificial data')
ax.plot(x, y_Fourier_1, label = ("'Riemann' series fit (%d terms)" % terms))
ax.plot(x,y_Fourier_2, label = ("'FFT' series fit (%d terms)" % terms))
ax.grid(True, color='dimgray', linestyle='--', linewidth=0.5)
ax.set_axisbelow(True)
ax.set_ylabel('y')
ax.set_xlabel('x')
ax.legend()