Другой np.unique
подход:
>>> import numpy as np
>>> a1 = np.linspace(0,2*np.pi,101)
>>> a2 = np.random.choice(a1, 60)
>>>
>>> unq, idx, cnts = np.unique(np.concatenate([a1, a2]), return_inverse=True, return_counts=True)
>>> assert np.all(unq[idx[:len(a1)]] == a1)
>>> result = cnts[idx[:len(a1)]] - 1
>>> result
array([0, 0, 2, 0, 2, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0,
0, 1, 0, 0, 0, 1, 1, 1, 2, 0, 0, 1, 2, 1, 0, 2, 0, 0, 0, 1, 0, 2,
0, 1, 2, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 4, 0, 0, 0, 1, 1, 1, 0, 0,
2, 0, 0, 1, 0, 0, 2, 0, 3, 0, 0, 0, 1, 1, 2, 0, 0, 0, 1, 1, 1, 1,
0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 2, 1])