Создайте подклассную модель с несколькими выходами, используйте наборы данных tenorflow в качестве входных данных.Пользовательские наборы данных.
Использовать керас, подходящие для модели поезда.
Когда я использую только набор данных поезда, он может работать.Но как только я использую наборы данных того же типа в качестве входных данных для проверки, происходит следующее: «Ошибка при проверке целевого объекта модели: ожидалось, что нет данных, но получено:«
Тип данных похож на «tuple (data, (target [0»)], target [1])) '
tenorflow-gpu == 1,12, tenorflow.keras
Неверная информация
File "/home/god/anaconda3/envs/tensorflow_n/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py", line 1574, in fit
steps=validation_steps)
File "/home/god/anaconda3/envs/tensorflow_n/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py", line 992, in _standardize_user_data
class_weight, batch_size)
File "/home/god/anaconda3/envs/tensorflow_n/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py", line 1154, in _standardize_weights
exception_prefix='target')
File "/home/god/anaconda3/envs/tensorflow_n/lib/python3.6/site-packages/tensorflow/python/keras/engine/training_utils.py", line 257, in standardize_input_data
'expected no data, but got:', data)
ValueError: ('Error when checking model target: expected no data, but got:', (<tf.Tensor 'IteratorGetNext_1:1' shape=(16, 16, 513) dtype=float32>, <tf.Tensor 'IteratorGetNext_1:2' shape=(16, 16, 513) dtype=float32>))
код упрощения вызывает ту же ошибку
import tensorflow as tf
class Model(tf.keras.Model):
def __init__(self):
super().__init__()
self.dense1 = tf.keras.layers.Dense(units=16)
self.dense2 = tf.keras.layers.Dense(units=16)
def compute_output_shape(self, input_shape):
return input_shape, input_shape
def call(self, inputs, training=None, mask=None):
out1 = self.dense1(inputs)
out2 = self.dense2(inputs)
return out1, out2
train_dataset = tf.data.Dataset.from_tensor_slices(
(tf.constant(0., shape=[1024, 16]), (tf.constant(0., shape=[1024, 16]), tf.constant(0., shape=[1024, 16])))).repeat().batch(32)
valid_dataset = tf.data.Dataset.from_tensor_slices(
(tf.constant(0., shape=[128, 16]), (tf.constant(0., shape=[128, 16]), tf.constant(0., shape=[128, 16])))).repeat(1).batch(32)
model = Model()
model.compile(
optimizer=tf.train.AdamOptimizer(learning_rate=1e-4),
loss=[tf.keras.losses.mse, tf.keras.losses.mse],
loss_weights=[1, 1]
)
model.fit(
train_dataset,
validation_data=valid_dataset,
epochs=10,
steps_per_epoch=30,
validation_steps=4,
)