Я пытаюсь выполнить параллельно некоторый алгоритм машинного обучения .
Когда я использую многопроцессорность, это медленнее, чем без.Я предпочитаю, что сериализация pickle
моделей, которые я использую, замедляет весь процесс.Итак, вопрос: как я могу инициализировать работника пула с начальным состоянием, чтобы мне не нужно было сериализовать / десериализовать для каждого отдельного вызова моделей?
Вот мой текущийкод:
import pickle
from pathlib import Path
from collections import Counter
from multiprocessing import Pool
from gensim.models.doc2vec import Doc2Vec
from wikimark import html2paragraph
from wikimark import tokenize
def process(args):
doc2vec, regressions, filepath = args
with filepath.open('r') as f:
string = f.read()
subcategories = Counter()
for index, paragraph in enumerate(html2paragraph(string)):
tokens = tokenize(paragraph)
vector = doc2vec.infer_vector(tokens)
for subcategory, model in regressions.items():
prediction = model.predict([vector])[0]
subcategories[subcategory] += prediction
# compute the mean score for each subcategory
for subcategory, prediction in subcategories.items():
subcategories[subcategory] = prediction / (index + 1)
# keep only the main category
subcategory = subcategories.most_common(1)[0]
return (filepath, subcategory)
def main():
input = Path('./build')
doc2vec = Doc2Vec.load(str(input / 'model.doc2vec.gz'))
regressions = dict()
for filepath in input.glob('./*/*/*.model'):
with filepath.open('rb') as f:
model = pickle.load(f)
regressions[filepath.parent] = model
examples = list(input.glob('../data/wikipedia/english/*'))
with Pool() as pool:
iterable = zip(
[doc2vec] * len(examples), # XXX!
[regressions] * len(examples), # XXX!
examples
)
for filepath, subcategory in pool.imap_unordered(process, iterable):
print('* {} -> {}'.format(filepath, subcategory))
if __name__ == '__main__':
main()
Строки, отмеченные XXX!
, указывают на данные, которые сериализовались, когда я звонил pool.imap_unodered
.Существует не менее 200 МБ данных, которые сериализуются.
Как можно избежать сериализации?