Решение fuzzyjoin
, использующее match_fun = str_detect или regex_join ():
library(tidyverse); library(fuzzyjoin)
# Load data
sub_df1 <- structure(list(database = "CLO, ArrayExpress, ArrayExpress, ATCC, BCRJ, BioSample, CCLE, ChEMBL-Cells, ChEMBL-Targets, Cosmic, Cosmic, Cosmic, Cosmic-CLP, GDSC, GEO, GEO, GEO, IGRhCellID, LINCS_LDP, Wikidata", database_accession = "CLO_0009006, E-MTAB-2770, E-MTAB-3610, CRL-7724, 0337, SAMN03471142, SH4_SKIN, CHEMBL3308177, CHEMBL2366309, 687440, 909713, 2159447, 909713, 909713, GSM887568, GSM888651, GSM1670420, SH4, LCL-1280, Q54953204"), .Names = c("database", "database_accession"), row.names = 2L, class = "data.frame")
sub_df2 <- structure(list(database_accession = "SH4_SKIN", G1 = -1.907138, G2 = -7.617305, G3 = -3.750553, G4 = 2.615004, G5 = 9.751557), .Names = c("database_accession", "G1", "G2", "G3", "G4", "G5"), row.names = 101L, class = "data.frame")
# Solution
# Using fuzzy_join. Could also use regex_full_join(), which is the wrapper for match_fun = str_detect, mode = "full"
fuzzy_join(sub_df1, sub_df2, match_fun = str_detect, by = "database_accession", mode = "full") %>%
str()
#> 'data.frame': 1 obs. of 8 variables:
#> $ database : chr "CLO, ArrayExpress, ArrayExpress, ATCC, BCRJ, BioSample, CCLE, ChEMBL-Cells, ChEMBL-Targets, Cosmic, Cosmic, Cos"| __truncated__
#> $ database_accession.x: chr "CLO_0009006, E-MTAB-2770, E-MTAB-3610, CRL-7724, 0337, SAMN03471142, SH4_SKIN, CHEMBL3308177, CHEMBL2366309, 68"| __truncated__
#> $ database_accession.y: chr "SH4_SKIN"
#> $ G1 : num -1.91
#> $ G2 : num -7.62
#> $ G3 : num -3.75
#> $ G4 : num 2.62
#> $ G5 : num 9.75
Создано в 2019-03-17 пакетом prex (v0.2,1)