У меня есть автоэнкодер, и я проверил точность своей модели с помощью различных решений, таких как изменение количества слоев конвоя и увеличение их, добавление или удаление нормализации партии, изменение функции активации, но точность для всех из них схожа иэто не имеет никакого улучшения, что странно.Я запутался, потому что я думаю, что точность для этих разных решений должна быть разной, но она составляет 0,8156.не могли бы вы помочь мне в чем проблема?Я также тренирую его с 10000 эпохами, но результат одинаков для 50 эпох!мой код неправильный или он не может стать лучше ?! График точности
Я также не уверен, работает ли спад скорости обучения или нет ?!Я тоже поставил свой код здесь:
from keras.layers import Input, Concatenate, GaussianNoise,Dropout,BatchNormalization
from keras.layers import Conv2D
from keras.models import Model
from keras.datasets import mnist,cifar10
from keras.callbacks import TensorBoard
from keras import backend as K
from keras import layers
import matplotlib.pyplot as plt
import tensorflow as tf
import keras as Kr
from keras.callbacks import ReduceLROnPlateau
from keras.callbacks import EarlyStopping
import numpy as np
import pylab as pl
import matplotlib.cm as cm
import keract
from matplotlib import pyplot
from keras import optimizers
from keras import regularizers
from tensorflow.python.keras.layers import Lambda;
image = Input((28, 28, 1))
conv1 = Conv2D(16, (3, 3), activation='elu', padding='same', name='convl1e')(image)
conv2 = Conv2D(32, (3, 3), activation='elu', padding='same', name='convl2e')(conv1)
conv3 = Conv2D(16, (3, 3), activation='elu', padding='same', name='convl3e')(conv2)
#conv3 = Conv2D(8, (3, 3), activation='relu', padding='same', name='convl3e', kernel_initializer='Orthogonal',bias_initializer='glorot_uniform')(conv2)
BN=BatchNormalization()(conv3)
#DrO1=Dropout(0.25,name='Dro1')(conv3)
DrO1=Dropout(0.25,name='Dro1')(BN)
encoded = Conv2D(1, (3, 3), activation='elu', padding='same',name='encoded_I')(DrO1)
#-----------------------decoder------------------------------------------------
#------------------------------------------------------------------------------
deconv1 = Conv2D(16, (3, 3), activation='elu', padding='same', name='convl1d')(encoded)
deconv2 = Conv2D(32, (3, 3), activation='elu', padding='same', name='convl2d')(deconv1)
deconv3 = Conv2D(16, (3, 3), activation='elu',padding='same', name='convl3d')(deconv2)
BNd=BatchNormalization()(deconv3)
DrO2=Dropout(0.25,name='DrO2')(BNd)
#DrO2=Dropout(0.5,name='DrO2')(deconv3)
decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same', name='decoder_output')(DrO2)
#model=Model(inputs=[image,wtm],outputs=decoded)
#--------------------------------adding noise----------------------------------
#decoded_noise = GaussianNoise(0.5)(decoded)
watermark_extraction=Model(inputs=image,outputs=decoded)
watermark_extraction.summary()
#----------------------training the model--------------------------------------
#------------------------------------------------------------------------------
#----------------------Data preparation----------------------------------------
(x_train, _), (x_test, _) = mnist.load_data()
x_validation=x_train[1:10000,:,:]
x_train=x_train[10001:60000,:,:]
#(x_train, _), (x_test, _) = cifar10.load_data()
#x_validation=x_train[1:10000,:,:]
#x_train=x_train[10001:60000,:,:]
#
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_validation = x_validation.astype('float32') / 255.
x_train = np.reshape(x_train, (len(x_train), 28, 28, 1)) # adapt this if using `channels_first` image data format
x_test = np.reshape(x_test, (len(x_test), 28, 28, 1)) # adapt this if using `channels_first` image data format
x_validation = np.reshape(x_validation, (len(x_validation), 28, 28, 1))
#---------------------compile and train the model------------------------------
# is accuracy sensible metric for this model?
learning_rate = 0.1
decay_rate = learning_rate / 50
opt = optimizers.SGD(lr=learning_rate, momentum=0.9, decay=decay_rate, nesterov=False)
watermark_extraction.compile(optimizer=opt, loss=['mse'], metrics=['accuracy'])
es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=20)
#rlrp = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5, min_delta=1E-7, verbose=1)
history=watermark_extraction.fit(x_train, x_train,
epochs=50,
batch_size=32,
validation_data=(x_validation, x_validation),
callbacks=[TensorBoard(log_dir='E:/output of tensorboard', histogram_freq=0, write_graph=False),es])
watermark_extraction.summary()
#--------------------visuallize the output layers------------------------------
#_, train_acc = watermark_extraction.evaluate(x_train, x_train)
#_, test_acc = watermark_extraction.evaluate([x_test[5000:5001],wt_expand], [x_test[5000:5001],wt_expand])
#print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))
## plot loss learning curves
pyplot.subplot(211)
pyplot.title('MSE Loss', pad=-40)
pyplot.plot(history.history['loss'], label='train')
pyplot.plot(history.history['val_loss'], label='validation')
pyplot.legend()
pyplot.subplot(212)
pyplot.title('Accuracy', pad=-40)
pyplot.plot(history.history['acc'], label='train')
pyplot.plot(history.history['val_acc'], label='test')
pyplot.legend()
pyplot.show