Используйте cut
с DatetimeIndex.day
или DatetimeIndex.week
, DatetimeIndex.month
и совокупность min
илиmax
, mean
, sum
:
bins = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]
labels = ['{}-{}'.format(i + 1, j) for i, j in zip(bins[:-1], bins[1:])]
s = pd.cut(data['a'], bins=bins, labels=labels)
df = data.groupby([data.index.day.rename('day'), s])['b'].min().reset_index()
#df = data.groupby([data.index.week.rename('week'), s])['b'].min().reset_index()
#df = data.groupby([data.index.month.rename('month'), s])['b'].min().reset_index()
print (df)
day a b
0 12 1.4-0.6 0.267070
1 12 1.6-0.8 0.637877
2 12 1.8-1.0 0.299172
Также возможно передать несколько функций по DataFrameGroupBy.agg
df2 = (data.groupby([data.index.day.rename('day'), s])['b']
.agg(['min','max','sum','mean'])
.reset_index())
print (df2)
day a min max sum mean
0 12 1.4-0.6 0.267070 0.267070 0.267070 0.267070
1 12 1.6-0.8 0.637877 0.903206 1.541084 0.770542
2 12 1.8-1.0 0.299172 0.405750 1.098002 0.366001
или с использованием DataFrameGroupBy.describe
:
df3 = (data.groupby([data.index.day.rename('day'), s])['b']
.describe()
.reset_index())
print (df3)
day a count mean std min 25% 50% \
0 12 1.4-0.6 1.0 0.267070 NaN 0.267070 0.267070 0.267070
1 12 1.6-0.8 2.0 0.770542 0.187616 0.637877 0.704210 0.770542
2 12 1.8-1.0 3.0 0.366001 0.058221 0.299172 0.346126 0.393081
75% max
0 0.267070 0.267070
1 0.836874 0.903206
2 0.399415 0.405750