Вы также можете использовать логический индекс в качестве маски:
def split_train_test(my_arr, x):
# define mask
mask=np.zeros(my_arr.shape[0], dtype=bool)
mask[x] = True # True only at index x, False elsewhere
return my_arr[mask, :], my_arr[~mask, :]
Пример выполнения:
test_arr, train_arr = split_train_test(np.random.rand(100, 20), x=10)
print(test_arr.shape, train_arr.shape)
((1L, 20L), (99L, 20L))
РЕДАКТИРОВАТЬ:
Если кто-то ищет общий случай, когда более чем один элемент должен быть выделен для тестового массива (скажем, 80% -20% разделения), x
может также принять массив:
my_arr = np.random.rand(100, 20)
x = np.random.choice(np.arange(my_arr.shape[0]), int(my_arr .shape[0]*0.8), replace=False)
test_arr, train_arr = split_train_test(my_arr, x)
print(test_arr.shape, train_arr.shape)
((80L, 20L), (20L, 20L))