Статус выхода: -100.Диагностика: контейнер освобожден на * потерянном * узле - PullRequest
0 голосов
/ 12 февраля 2019

У меня есть 2 входных файла (один в JSON, а другой в паркетном), я пытаюсь объединить эти 2 больших фрейма данных и записать объединенный фрейм данных в s3 (как JSON).Работа застряла навсегда (при записи присоединенного JSON в s3).Я использую 70 r3.4xlarge (slaves).

df1.rdd.partitions.size = 34234 (размер ~ 4 ТБ)

df2.rdd.partitions.size = 1200 (размер ~58 ГБ)

Вещи, которые я пробовал, но все еще не улучшил:

Динамическое распределение с максимальным ресурсом, установленным в значение true. Статическое распределение: spark.executor.cores = 5

spark.executor.memory = 40G

spark.executor.instances = 209

Изменяя разделы, я играл с разделами, установив: spark.default.parallelism и spark.sql.shuffle.partitions до 2000, 4000, 8000, 10000, 20000, 35000, но без использования.

Промежуточный персистент - сохраняющий (типы memory_disk и disk_only) объединенный df, сохраняющий оба входа (до объединения), выполнил некоторое действие на обоих dfs и затем сделалприсоединяйтесь и пишите в s3

Tuning "mapreduce.input.fileinputformat.split.minsize и" mapreduce.input.fileinputformat.split.maxsize (до 750000000).

Я пробовал использовать 30 r3.8 также большой.Без улучшений ☹

Я продолжаю получать одну из этих 2 ошибок -

zeppelin-interpreter-spark-zeppelin-ip-10-0-1-213.log: WARN [2019-02-12 04:54:43,437] ({dispatcher-event-loop-8} Logging.scala[logWarning]:66) - Lost task 24117.0 in stage 3.0 (TID 32666, ip-10-0-1-242.ec2.internal, executor 5): ExecutorLostFailure (executor 5 exited caused by one of the running tasks) Reason: Container marked as failed: container_1549914591854_0018_01_000010 on host: ip-10-0-1-242.ec2.internal. Exit status: -100. Diagnostics: Container released on a *lost* node

org.apache.spark.SparkException: Job aborted.
  at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply$mcV$sp(FileFormatWriter.scala:213)
  at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:166)
  at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:166)
  at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:65)
  at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:166)
  at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:145)
  at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:58)
  at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:56)
  at org.apache.spark.sql.execution.command.ExecutedCommandExec.doExecute(commands.scala:74)
  at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:117)
  at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:117)
  at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:138)
  at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
  at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:135)
  at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:116)
  at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:92)
  at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:92)
  at org.apache.spark.sql.execution.datasources.DataSource.writeInFileFormat(DataSource.scala:435)
  at org.apache.spark.sql.execution.datasources.DataSource.write(DataSource.scala:471)
  at org.apache.spark.sql.execution.datasources.SaveIntoDataSourceCommand.run(SaveIntoDataSourceCommand.scala:50)
  at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:58)
  at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:56)
  at org.apache.spark.sql.execution.command.ExecutedCommandExec.doExecute(commands.scala:74)
  at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:117)
  at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:117)
  at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:138)
  at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
  at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:135)
  at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:116)
  at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:92)
  at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:92)
  at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:609)
  at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:233)
  at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:217)
  at org.apache.spark.sql.DataFrameWriter.json(DataFrameWriter.scala:487)
  ... 48 elided
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 2234 in stage 15.0 failed 4 times, most recent failure: Lost task 2234.3 in stage 15.0 (TID 136390, ip-10-0-1-56.ec2.internal, executor 8): ExecutorLostFailure (executor 8 exited caused by one of the running tasks) Reason: Slave lost
Driver stacktrace:
  at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1708)
  at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1696)
  at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1695)
  at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
  at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
  at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1695)
  at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:855)
  at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:855)
  at scala.Option.foreach(Option.scala:257)
  at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:855)
  at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1923)
  at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1878)
  at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1867)
  at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
  at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:671)
  at org.apache.spark.SparkContext.runJob(SparkContext.scala:2029)
  at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply$mcV$sp(FileFormatWriter.scala:186)
  ... 82 more

Может кто-нибудь сказать мне, что я делаю здесь неправильно?

1 Ответ

0 голосов
/ 24 мая 2019

Похоже, исполнитель потерян из-за проблем с памятью.Пожалуйста, попробуйте настроить параметры искры в файле spark-default.cfg или попробуйте увеличить вычислительные ресурсы

...