Я расширил образец:
CREATE TABLE bigtable(
ProductID INTEGER
,Store INTEGER
,Trans_Date DATE
,Cost_Amt VARCHAR(10)
);
INSERT INTO bigtable(ProductID,Store,Trans_Date,Cost_Amt) VALUES (20202,2320,'2018-01-02','$9.23');
INSERT INTO bigtable(ProductID,Store,Trans_Date,Cost_Amt) VALUES (20202,2320,'2018-01-03','$9.23');
INSERT INTO bigtable(ProductID,Store,Trans_Date,Cost_Amt) VALUES (20202,2320,'2018-01-04','$9.23');
INSERT INTO bigtable(ProductID,Store,Trans_Date,Cost_Amt) VALUES (20202,2320,'2018-01-05','$9.38');
INSERT INTO bigtable(ProductID,Store,Trans_Date,Cost_Amt) VALUES (20202,2320,'2018-01-06','$9.38');
INSERT INTO bigtable(ProductID,Store,Trans_Date,Cost_Amt) VALUES (20202,2320,'2018-01-07','$9.38');
INSERT INTO bigtable(ProductID,Store,Trans_Date,Cost_Amt) VALUES (20202,2320,'2018-01-08','$9.23');
INSERT INTO bigtable(ProductID,Store,Trans_Date,Cost_Amt) VALUES (20202,2320,'2018-01-09','$9.23');
INSERT INTO bigtable(ProductID,Store,Trans_Date,Cost_Amt) VALUES (20202,2320,'2018-01-10','$9.23');
INSERT INTO bigtable(ProductID,Store,Trans_Date,Cost_Amt) VALUES (20202,2320,'2018-01-11','$9.38');
, и этот запрос используется для отображения производной таблицы:
select
*
, row_number() over(partition by ProductID,Store order by Trans_Date) rn1
, row_number() over(partition by ProductID,Store,Cost_Amt order by Trans_Date) rn2
, row_number() over(partition by ProductID,Store order by Trans_Date)
- row_number() over(partition by ProductID,Store,Cost_Amt order by Trans_Date) grp
from bigtable
order by ProductID,Store,Trans_Date
;
, которая вычисляет значение "grp", которое нам понадобится позже:
| | ProductID | Store | Trans_Date | Cost_Amt | rn1 | rn2 | grp |
|----|-----------|-------|---------------------|----------|-----|-----|-----|
| 1 | 20202 | 2320 | 02.01.2018 00:00:00 | $9.23 | 1 | 1 | 0 |
| 2 | 20202 | 2320 | 03.01.2018 00:00:00 | $9.23 | 2 | 2 | 0 |
| 3 | 20202 | 2320 | 04.01.2018 00:00:00 | $9.23 | 3 | 3 | 0 |
| 4 | 20202 | 2320 | 05.01.2018 00:00:00 | $9.38 | 4 | 1 | 3 |
| 5 | 20202 | 2320 | 06.01.2018 00:00:00 | $9.38 | 5 | 2 | 3 |
| 6 | 20202 | 2320 | 07.01.2018 00:00:00 | $9.38 | 6 | 3 | 3 |
| 7 | 20202 | 2320 | 08.01.2018 00:00:00 | $9.23 | 7 | 4 | 3 |
| 8 | 20202 | 2320 | 09.01.2018 00:00:00 | $9.23 | 8 | 5 | 3 |
| 9 | 20202 | 2320 | 10.01.2018 00:00:00 | $9.23 | 9 | 6 | 3 |
| 10 | 20202 | 2320 | 11.01.2018 00:00:00 | $9.38 | 10 | 4 | 6 |
и теперь вычисляются диапазоны дат:
select
ProductID
, Store
, Cost_Amt
, grp
, min(Trans_Date) start_date
, max(Trans_Date) end_date
from (
select
*
, row_number() over(partition by ProductID,Store order by Trans_Date)
- row_number() over(partition by ProductID,Store,Cost_Amt order by Trans_Date) grp
from bigtable
) d
group by
ProductID
, Store
, Cost_Amt
, grp
;
, в результате чего:
| | ProductID | Store | Cost_Amt | grp | (No column name) | (No column name) |
|----|-----------|-------|----------|-----|---------------------|---------------------|
| 1 | 20202 | 2320 | $9.23 | 0 | 02.01.2018 00:00:00 | 04.01.2018 00:00:00 |
| 2 | 20202 | 2320 | $9.23 | 3 | 08.01.2018 00:00:00 | 10.01.2018 00:00:00 |
| 3 | 20202 | 2320 | $9.38 | 3 | 05.01.2018 00:00:00 | 07.01.2018 00:00:00 |
| 4 | 20202 | 2320 | $9.38 | 6 | 11.01.2018 00:00:00 | 11.01.2018 00:00:00 |
также см .: http://rextester.com/PJRU91378