Использование CVXPY вместо:
from cvxpy import *
import numpy as np
m = 30
n = 10
# generate random data
np.random.seed(1)
A = np.random.randn(m,n)
b = np.random.randn(m)
# optimization variable
x = Variable(n)
# build optimization problem
prob = Problem( Maximize(sum(A*x)), [ sum(x) == 1, A*x >= 0 ])
# solve optimization problem and prints results
result = prob.solve()
print x.value
Эта проблема оптимизации неограничена и, таким образом, не существует оптимального решения.