Мне нужно выполнить слияние, чтобы сопоставить новый набор идентификаторов со старым набором идентификаторов.Мои начальные данные выглядят так:
lst = [10001, 20001, 30001]
dt = pd.date_range(start='2016', end='2018', freq='M')
idx = pd.MultiIndex.from_product([dt,lst],names=['date','id'])
df = pd.DataFrame(np.random.randn(len(idx)), index=idx)
In [94]: df.head()
Out[94]:
0
date id
2016-01-31 10001 -0.512371
20001 -1.164461
30001 -1.253232
2016-02-29 10001 -0.129874
20001 0.711938
И я хочу сопоставить id
с newid
, используя данные, которые выглядят так:
df1 = pd.DataFrame({'id': [10001, 10001, 10001, 10001],
'start_date': ['2015-11-31', '2016-02-01', '2016-05-16', '2017-02-16'],
'end_date': ['2016-01-31', '2016-05-15', '2017-02-15', '2018-04-02'],
'new_id': ['ABC123', 'XYZ789', 'HIJ456', 'LMN654']},)
df2 = pd.DataFrame({'id': [20001, 20001, 20001, 20001],
'start_date': ['2015-10-07', '2016-01-08', '2016-06-02', '2017-02-13'],
'end_date': ['2016-01-07', '2016-06-01', '2017-02-12', '2018-03-017'],
'new_id': ['CBA321', 'ZYX987', 'JIH765', 'NML345']},)
df3 = pd.DataFrame({'id': [30001, 30001, 30001, 30001],
'start_date': ['2015-07-31', '2016-02-23', '2016-06-17', '2017-05-12'],
'end_date': ['2016-02-22', '2016-06-16', '2017-05-11', '2018-01-05'],
'new_id': ['CCC333', 'XXX444', 'HHH888', 'III888']},)
df_ranges = pd.concat([df1,df2,df3])
In [95]: df_ranges.head()
Out[95]:
index end_date id new_id start_date
0 0 2016-01-31 10001 ABC123 2015-11-31
1 1 2016-05-15 10001 XYZ789 2016-02-01
2 2 2017-02-15 10001 HIJ456 2016-05-16
3 3 2018-04-02 10001 LMN654 2017-02-16
4 0 2016-01-07 20001 CBA321 2015-10-07
В основном, мои данные ежемесячныеданные панели и новые данные имеют диапазоны дат, для которых допустимо определенное отображение из A-> B.Итак, в строке 1 данных сопоставления указано, что с 2016-01-31 по 2015-211-31 идентификатор 10001
отображается на ABC123
.
Ранее я делал это в SAS / SQL с помощью следующего предложения:
SELECT a.*, b.newid FROM df as a, df_ranges as b
WHERE a.id = b.id AND b.start_date <= a.date < b.end_date
Несколько замечаний по поводу данных:
- это должно быть1: 1 сопоставление идентификатора с новым.
- диапазоны дат не перекрываются
Хорошим началом может служить решение: Объединение фреймов данных на основе диапазона дат
Этоэто именно то, что я ищу, за исключением того, что он сливается только по датам, а не дополнительно id
.Я играл с groupby () и этим решением, но не нашел способа заставить его работать.Еще одна идея, которая у меня возникла, заключалась в том, чтобы отменить укладку () данных отображения (df_ranges) для соответствия измерениям / частоте времени df
, но, похоже, это просто переосмысливает существующую проблему.