У меня есть следующая сеть, в которой я пытаюсь потерять триплет:
Во-первых, у меня есть собственный класс Convolution ConvBlock (nn.Module):
def __init__(self, ngpu, input_c, output_c, mode=0):
super(ConvBlock, self).__init__()
self.ngpu = ngpu
self.input_c = input_c
self.output_c = output_c
self.mode = mode
self.b1 = nn.Sequential(
nn.Conv2d(input_c, output_c, 3, stride=1, padding=1),
#nn.BatchNorm2d(output_c),
nn.PReLU(),
)
self.b2 = nn.Sequential(
nn.Conv2d(output_c, output_c, 3, stride=1, padding=1),
#nn.BatchNorm2d(output_c),
nn.PReLU(),
)
self.pool = nn.Sequential(
nn.MaxPool2d(2, 2),
)
def forward(self, input):
batch_size = input.size(0)
if self.mode == 0:
b1 = self.b1(input)
hidden = self.pool(b1)
return hidden, b1
elif self.mode == 1:
b1 = self.b1(input)
b2 = self.b2(b1)
hidden = self.pool(b2)
return hidden, b2
elif self.mode == 2:
b1 = self.b1(input)
hidden = self.b2(b1)
return hidden
Теперь у меня естьмодуль кодировщика:
class _Encoder (nn.Module):
def __init__(self, ngpu,nc,nef,out_size,nz):
super(_Encoder, self).__init__()
self.ngpu = ngpu
self.nc = nc
self.nef = nef
self.out_size = out_size
self.nz = nz
self.c1 = ConvBlock(self.ngpu, nc, nef, 0) # 3 - 64
self.c2 = ConvBlock(self.ngpu, nef, nef*2, 0) # 64-128
self.c3 = ConvBlock(self.ngpu, nef*2, nef*4, 1) # 128-256
self.c4 = ConvBlock(self.ngpu, nef*4, nef*8, 1) # 256 -512
self.c5 = ConvBlock(self.ngpu, nef*8, nef*8, 2) # 512-512
# 8 because..the depth went from 32 to 32*8
self.mean = nn.Linear(nef * 8 * out_size * (out_size/2), nz)
self.logvar = nn.Linear(nef * 8 * out_size * (out_size/2), nz)
#for reparametrization trick
def sampler(self, mean, logvar):
std = logvar.mul(0.5).exp_()
if args.cuda:
eps = torch.cuda.FloatTensor(std.size()).normal_()
else:
eps = torch.FloatTensor(std.size()).normal_()
eps = Variable(eps)
return eps.mul(std).add_(mean)
def forward(self, input):
batch_size = input.size(0)
if isinstance(input.data, torch.cuda.FloatTensor) and self.ngpu > 1:
c1_out, c1_x = nn.parallel.data_parallel(self.c1, input, range(self.ngpu))
c2_out, c2_x = nn.parallel.data_parallel(self.c2, c1_out, range(self.ngpu))
c3_out, c3_x = nn.parallel.data_parallel(self.c3, c2_out, range(self.ngpu))
c4_out, c4_x = nn.parallel.data_parallel(self.c4, c3_out, range(self.ngpu))
hidden = nn.parallel.data_parallel(self.c5, c4_out, range(self.ngpu))
# hidden = nn.parallel.data_parallel(self.encoder, input, range(self.ngpu))
hidden = hidden.view(batch_size, -1)
mean = nn.parallel.data_parallel(self.mean, hidden, range(self.ngpu))
logvar = nn.parallel.data_parallel(self.logvar, hidden, range(self.ngpu))
else:
c1_out, c1_x = self.c1(input)
c2_out, c2_x = self.c2(c1_out)
c3_out, c3_x = self.c3(c2_out)
c4_out, c4_x = self.c4(c3_out)
hidden = self.c5(c4_out)
# hidden = self.encoder(input)
hidden = hidden.view(batch_size, -1)
mean, logvar = self.mean(hidden), self.logvar(hidden)
latent_z = self.sampler(mean, logvar)
if ADD_SKIP_CONNECTION:
return latent_z,mean,logvar,{"c1_x":c1_x, "c2_x":c2_x, "c3_x":c3_x, "c4_x":c4_x}
else:
return latent_z,mean,logvar,{"c1_x":None, "c2_x":None, "c3_x":None, "c4_x":None}
Я инициализирую свой кодировщик как отдельный объект:
encoder = _Encoder(ngpu,nc,nef,out_size,nz)
encoder = encoder.cuda()
И затем я применяюнекоторые функции:
latent_x,mean_x,logvar_x,skip_x = self.encoder(x)
latent_y,mean_y,logvar_y,skip_y = self.encoder(y)
latent_z,mean_z,logvar_z,skip_z = self.encoder(z)
dist_a = F.pairwise_distance(mean_x, mean_y, 2)
dist_b = F.pairwise_distance(mean_x, mean_z, 2)
loss_triplet = triplet_loss(dist_a, dist_b, target)
optimizer.zero_grad()
loss_triplet.backward()
optimizer.step()
Я начинаю сомневаться в том, действительно ли веса являются общими для 3 блоков кодера.Пожалуйста, помогите мне проверить скажите, если это так