dplyr::lag
позволяет установить расстояние, на которое вы хотите отставать.Вы можете группировать по любым переменным, которые вы хотите - в данном случае, Name
, VarA
и VarB
- перед созданием ваших отстающих переменных.
library(dplyr)
df %>%
group_by(Name, VarA, VarB) %>%
mutate(Lg1.Data.1 = lag(Data.1, n = 1), Lg2.Data.1 = lag(Data.1, n = 2))
#> # A tibble: 6 x 8
#> # Groups: Name, VarA, VarB [2]
#> Name Year VarA VarB Data.1 Data.2 Lg1.Data.1 Lg2.Data.1
#> <chr> <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 A 2016 L H 100 101 NA NA
#> 2 A 2017 L H 105 99 100 NA
#> 3 A 2018 L H 103 105 105 100
#> 4 A 2016 L A 90 95 NA NA
#> 5 A 2017 L A 99 92 90 NA
#> 6 A 2018 L A 102 101 99 90
Если вы хотите версию, которая масштабируется до большегоlags, вы можете использовать нестандартную оценку для динамического создания новых столбцов с задержками.Я сделаю это с purrr::map
, чтобы выполнить итерацию набора n
для отставания, составить список фреймов данных с добавленными новыми столбцами, а затем соединить все фреймы данных вместе.Вероятно, есть более эффективные способы сделать это в NSE, так что, надеюсь, кто-то сможет улучшить это.
Я собираю некоторые новые данные, просто для иллюстрации более широкого диапазона лет.Внутри mutate
вы можете создавать имена столбцов с помощью quo_name
.
library(dplyr)
library(purrr)
set.seed(127)
df <- tibble(
Name = "A", Year = rep(2016:2020, 2), VarA = "L", VarB = rep(c("H", "A"), each = 5),
Data.1 = sample(1:10, 10, replace = T), Data.2 = sample(1:10, 10, replace = T)
)
df_list <- purrr::map(1:4, function(i) {
df %>%
group_by(Name, VarA, VarB) %>%
mutate(!!quo_name(paste0("Lag", i)) := dplyr::lag(Data.1, n = i))
})
Вам не нужно сохранять этот список - я просто делаю это, чтобы показать пример одного из фреймов данных,Вместо этого вы можете перейти прямо к reduce
.
df_list[[3]]
#> # A tibble: 10 x 7
#> # Groups: Name, VarA, VarB [2]
#> Name Year VarA VarB Data.1 Data.2 Lag3
#> <chr> <int> <chr> <chr> <int> <int> <int>
#> 1 A 2016 L H 3 9 NA
#> 2 A 2017 L H 1 4 NA
#> 3 A 2018 L H 3 8 NA
#> 4 A 2019 L H 2 2 3
#> 5 A 2020 L H 4 5 1
#> 6 A 2016 L A 8 4 NA
#> 7 A 2017 L A 6 8 NA
#> 8 A 2018 L A 3 2 NA
#> 9 A 2019 L A 8 6 8
#> 10 A 2020 L A 9 1 6
Затем использовать purrr::reduce
, чтобы объединить все кадры данных в списке.Поскольку в каждом из фреймов данных есть одинаковые столбцы, к которым вы хотите присоединиться, вы можете обойтись без указания столбцов присоединения в inner_join
.
reduce(df_list, inner_join)
#> Joining, by = c("Name", "Year", "VarA", "VarB", "Data.1", "Data.2")
#> Joining, by = c("Name", "Year", "VarA", "VarB", "Data.1", "Data.2")
#> Joining, by = c("Name", "Year", "VarA", "VarB", "Data.1", "Data.2")
#> # A tibble: 10 x 10
#> # Groups: Name, VarA, VarB [?]
#> Name Year VarA VarB Data.1 Data.2 Lag1 Lag2 Lag3 Lag4
#> <chr> <int> <chr> <chr> <int> <int> <int> <int> <int> <int>
#> 1 A 2016 L H 3 9 NA NA NA NA
#> 2 A 2017 L H 1 4 3 NA NA NA
#> 3 A 2018 L H 3 8 1 3 NA NA
#> 4 A 2019 L H 2 2 3 1 3 NA
#> 5 A 2020 L H 4 5 2 3 1 3
#> 6 A 2016 L A 8 4 NA NA NA NA
#> 7 A 2017 L A 6 8 8 NA NA NA
#> 8 A 2018 L A 3 2 6 8 NA NA
#> 9 A 2019 L A 8 6 3 6 8 NA
#> 10 A 2020 L A 9 1 8 3 6 8
Создано в 2018-12-07 пакетом Представить (v0.2.1)