присвоение имен уровням столбцов может быть полезно во многих случаях при манипулировании данными.
простой пример может быть при использовании `stack () '
df = pd.DataFrame([['a', 'b'], ['d', 'e']], columns=['hello', 'world'])
print(df.stack())
0 hello a
world b
1 hello d
world e
df.columns.name = 'temp'
print(df.stack())
temp
0 hello a
world b
1 hello d
world e
dtype: object
в качестве пользователяможно увидеть, что сложенный df сохранил название уровня столбцов.в многоиндексном / многоуровневом фрейме данных это может быть очень полезно
немного более сложный пример (из документа):
tuples = [('bar', 'one'),
('bar', 'two'),
('baz', 'one'),
('baz', 'two'),
('foo', 'one'),
('foo', 'two'),
('qux', 'one'),
('qux', 'two')]
index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
pd.MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], ['one', 'two']],
labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
names=['first', 'second'])
s = pd.Series(np.random.randn(8), index=index)
print(s)
first second
bar one -0.9166
two 1.0698
baz one -0.8749
two 1.3895
foo one 0.5333
two 0.1014
qux one -1.2350
two -0.6479
dtype: float64
s.unstack()
second one two
first
bar -0.9166 1.0698
baz -0.8749 1.3895
foo 0.5333 0.1014
qux -1.2350 -0.6479