Я бы хотел установить несколько моделей и сравнить их с помощью функции anova
.Есть ссылка , описывающая, как это можно сделать с помощью do
, но вызов anova у меня не работает.Обратите внимание, что теперь я использую purrr :: map, но это не меняет полученную ошибку (см. Ниже)
Вот мой код:
out = df %>%
group_by(condition,File) %>%
nest() %>%
mutate(fit_nls = purrr::map(data, ~ minpack.lm::nlsLM(rating ~ a*cd^b + d,data=.)),
fit_lm = purrr::map(data, ~ lm(rating ~ cd,data=.)))
out %>% do(aov = stats::anova(.$fit_nls, .$fit_lm))
Error in UseMethod("anova") :
no applicable method for 'anova' applied to an object of class "list"*
Информация о сеансе:
R version 3.4.2 (2017-09-28)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.4
Matrix products: default
BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] readbulk_1.1.0 assertr_2.5 afex_0.20-2 emmeans_1.2 lme4_1.1-17 Matrix_1.2-11 naniar_0.2.0 car_3.0-0
[9] knitr_1.20 kableExtra_0.8.0 broom_0.4.4 bindrcpp_0.2.2 effects_4.0-1 carData_3.0-1 QuantPsyc_1.5 MASS_7.3-47
[17] boot_1.3-20 jmv_0.8.6.2 forcats_0.3.0 stringr_1.3.0 dplyr_0.7.4 purrr_0.2.4 readr_1.1.1 tidyr_0.8.0
[25] tibble_1.4.2 ggplot2_2.2.1 tidyverse_1.2.1 pacman_0.4.6
loaded via a namespace (and not attached):
[1] readxl_1.1.0 backports_1.1.2 plyr_1.8.4 igraph_1.2.1 lazyeval_0.2.1 splines_3.4.2
[7] crosstalk_1.0.0 TH.data_1.0-8 rstantools_1.5.0 inline_0.3.14 digest_0.6.15 htmltools_0.3.6
[13] rsconnect_0.8.8 lmerTest_3.0-1 magrittr_1.5 openxlsx_4.0.17 brms_2.2.0 modelr_0.1.2
[19] matrixStats_0.53.1 xts_0.10-2 sandwich_2.4-0 colorspace_1.3-2 rvest_0.3.2 haven_1.1.1
[25] crayon_1.3.4 jsonlite_1.5 bindr_0.1.1 survival_2.41-3 zoo_1.8-1 glue_1.2.0
[31] gtable_0.2.0 rstan_2.17.3 abind_1.4-5 scales_0.5.0 mvtnorm_1.0-7 miniUI_0.1.1
[37] Rcpp_0.12.16 viridisLite_0.3.0 xtable_1.8-2 foreign_0.8-69 stats4_3.4.2 StanHeaders_2.17.2
[43] survey_3.33-2 DT_0.4 htmlwidgets_1.2 httr_1.3.1 threejs_0.3.1 modeltools_0.2-21
[49] pkgconfig_2.0.1 loo_2.0.0 nnet_7.3-12 utf8_1.1.3 tidyselect_0.2.4 labeling_0.3
[55] rlang_0.2.0 reshape2_1.4.3 later_0.7.1 munsell_0.4.3 cellranger_1.1.0 tools_3.4.2
[61] cli_1.0.0 jmvcore_0.8.5 ggridges_0.5.0 evaluate_0.10.1 yaml_2.1.18 coin_1.2-2
[67] visdat_0.1.0 nlme_3.1-131 mime_0.5 xml2_1.2.0 compiler_3.4.2 bayesplot_1.5.0
[73] shinythemes_1.1.1 rstudioapi_0.7 curl_3.2 stringi_1.1.6 highr_0.6 Brobdingnag_1.2-5
[79] lattice_0.20-35 psych_1.8.4 nloptr_1.0.4 markdown_0.8 shinyjs_1.0 pillar_1.2.2
[85] bridgesampling_0.4-0 estimability_1.3 data.table_1.10.4-3 httpuv_1.4.0 R6_2.2.2 promises_1.0.1
[91] gridExtra_2.3 rio_0.5.10 codetools_0.2-15 colourpicker_1.0 gtools_3.5.0 assertthat_0.2.0
[97] rprojroot_1.3-2 rjson_0.2.15 minpack.lm_1.2-1 shinystan_2.5.0 mnormt_1.5-5 multcomp_1.4-8
[103] parallel_3.4.2 hms_0.4.2 grid_3.4.2 coda_0.19-1 minqa_1.2.4 rmarkdown_1.9
[109] numDeriv_2016.8-1 shiny_1.0.5 lubridate_1.7.4 base64enc_0.1-3 dygraphs_1.1.1.4
Вот данные:
dput(df)
structure(list(condition = structure(c(1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("new", "standard"
), class = "factor"), File = c("001", "001", "001", "001", "001",
"001", "001", "001", "002", "002", "002", "002", "002", "002",
"002", "002", "003", "003", "003", "003", "003", "003", "003",
"003", "004", "004", "004", "004", "004", "004", "004", "004",
"005", "005", "005", "005", "005", "005", "005", "005", "006",
"006", "006", "006", "006", "006", "006", "006", "007", "007",
"007", "007", "007", "007", "007", "007", "008", "008", "008",
"008", "008", "008", "008", "008", "009", "009", "009", "009",
"009", "009", "009", "009", "010", "010", "010", "010", "010",
"010", "010", "010", "011", "011", "011", "011", "011", "011",
"011", "011", "012", "012", "012", "012", "012", "012", "012",
"012", "013", "013", "013", "013", "013", "013", "013", "013",
"014", "014", "014", "014", "014", "014", "014", "014", "015",
"015", "015", "015", "015", "015", "015", "015", "016", "016",
"016", "016", "016", "016", "016", "016", "017", "017", "017",
"017", "017", "017", "017", "017", "019", "019", "019", "019",
"019", "019", "019", "019", "020", "020", "020", "020", "020",
"020", "020", "020", "021", "021", "021", "021", "021", "021",
"021", "021", "022", "022", "022", "022", "022", "022", "022",
"022", "023", "023", "023", "023", "023", "023", "023", "023",
"024", "024", "024", "024", "024", "024", "024", "024", "025",
"025", "025", "025", "025", "025", "025", "025", "026", "026",
"026", "026", "026", "026", "026", "026", "027", "027", "027",
"027", "027", "027", "027", "027", "028", "028", "028", "028",
"028", "028", "028", "028", "029", "029", "029", "029", "029",
"029", "029", "029", "031", "031", "031", "031", "031", "031",
"031", "031", "032", "032", "032", "032", "032", "032", "032",
"032", "033", "033", "033", "033", "033", "033", "033", "033",
"034", "034", "034", "034", "034", "034", "034", "034", "035",
"035", "035", "035", "035", "035", "035", "035", "036", "036",
"036", "036", "036", "036", "036", "036"), rating = c(15, 12,
7.69230769230769, 11, 6.66666666666667, 5, 8.33333333333333,
16, 5, 8, 11, 20, 6, 13, 18, 5, 14, 7.69230769230769, 11, 6.25,
14, 7.14285714285714, 5.55555555555556, 18, 7, 7, 12, 19, 2,
3, 10, 20, 20, 11, 6.66666666666667, 5, 25, 12, 6.66666666666667,
4, 50, 30, 5, 11, 7.5, 2, 1, 15, 6.66666666666667, 8.33333333333333,
20, 3.33333333333333, 5, 50, 15, 11, 9.25, 7, 10.5, 11, 18, 5.5,
13, 2, 4, 12, 16, 6.66666666666667, 25, 5, 8.33333333333333,
17, 6, 15, 8, 4, 13, 9, 30, 11, 12, 90, 2, 3.33333333333333,
5, 20, 6.25, 30, 12, 30, 7, 4, 4, 6, 20, 15, 13, 12, 6.66666666666667,
25, 6.66666666666667, 18, 5, 9.09090909090909, 8, 20, 14, 2,
11, 6, 9, 12, 6.66666666666667, 45, 18, 2, 5, 12, 25, 4, 20,
1.5, 13, 18, 9, 9, 7, 2, 30, 15, 5.55555555555556, 5, 11, 7.69230769230769,
20, 3.33333333333333, 14, 7.14285714285714, 7.69230769230769,
5.88235294117647, 11, 16, 18, 8.33333333333333, 7, 8, 3, 11,
4, 14, 20, 21, 7.14285714285714, 14, 20, 12, 6.66666666666667,
8.33333333333333, 7.69230769230769, 11, 6, 12, 18, 4, 7, 13,
2, 11, 4, 13, 6.66666666666667, 30, 5, 30, 20, 2.85714285714286,
20, 11, 17, 2, 6, 13, 9, 4, 2.5, 7.14285714285714, 35, 5.26315789473684,
4, 11, 16, 25, 5, 14, 11, 2, 8, 7, 18, 20, 16, 20, 8.33333333333333,
4.76190476190476, 11, 7.14285714285714, 5.88235294117647, 12,
17, 8, 23, 5, 10.5, 6, 11, 2.6, 6.66666666666667, 12, 6.25, 30,
15, 3.33333333333333, 6.66666666666667, 25, 5.55555555555556,
7.69230769230769, 4.34782608695652, 15, 20, 11, 8.33333333333333,
12, 2, 17, 7, 15, 5, 20, 11, 6, 2.5, 3.33333333333333, 30, 15,
11, 6.66666666666667, 50, 4, 7, 26, 4, 10, 3, 13, 20, 9, 11,
6.66666666666667, 2.5, 40, 13, 8.33333333333333, 5, 18, 13, 7,
1, 20, 11, 1, 7, 17), cd = c(57.2, 32, 3.2, 17.9, 1.8, 1, 5.7,
100, 1, 5.7, 17.9, 100, 3.2, 32, 57.2, 1.8, 32, 5.7, 17.9, 3.2,
57.2, 1.8, 1, 100, 3.2, 5.7, 32, 57.2, 1, 1.8, 17.9, 100, 57.2,
17.9, 1.8, 3.2, 100, 32, 5.7, 1, 100, 57.2, 3.2, 17.9, 5.7, 1.8,
1, 32, 3.2, 5.7, 57.2, 1, 1.8, 100, 32, 17.9, 5.7, 3.2, 17.9,
32, 100, 1.8, 57.2, 1, 1, 17.9, 32, 3.2, 100, 1.8, 5.7, 57.2,
1.8, 57.2, 3.2, 1, 32, 5.7, 100, 17.9, 17.9, 100, 1, 1.8, 3.2,
32, 5.7, 57.2, 17.9, 100, 5.7, 1.8, 1, 3.2, 57.2, 32, 32, 17.9,
1.8, 100, 3.2, 57.2, 1, 5.7, 3.2, 100, 57.2, 1, 17.9, 1.8, 5.7,
32, 5.7, 100, 32, 1, 1.8, 17.9, 57.2, 3.2, 100, 1, 32, 57.2,
5.7, 17.9, 3.2, 1.8, 100, 32, 3.2, 1.8, 17.9, 5.7, 57.2, 1, 32,
1.8, 3.2, 1, 17.9, 57.2, 100, 5.7, 3.2, 5.7, 1.8, 17.9, 1, 32,
57.2, 100, 1.8, 57.2, 100, 32, 1, 5.7, 3.2, 17.9, 3.2, 32, 100,
1.8, 5.7, 57.2, 1, 17.9, 1.8, 17.9, 5.7, 100, 3.2, 57.2, 32,
1, 100, 17.9, 57.2, 1, 3.2, 32, 5.7, 1.8, 1, 5.7, 100, 3.2, 1.8,
17.9, 32, 57.2, 1.8, 32, 17.9, 1, 5.7, 3.2, 57.2, 100, 57.2,
100, 5.7, 1, 17.9, 3.2, 1.8, 32, 57.2, 5.7, 100, 1.8, 17.9, 3.2,
32, 1, 5.7, 17.9, 3.2, 100, 32, 1, 1.8, 57.2, 1.8, 3.2, 1, 57.2,
100, 17.9, 5.7, 32, 1, 57.2, 5.7, 32, 1.8, 100, 17.9, 3.2, 1,
1.8, 57.2, 32, 17.9, 5.7, 100, 3.2, 3.2, 100, 1.8, 17.9, 1, 32,
57.2, 5.7, 17.9, 3.2, 1, 100, 32, 5.7, 1.8, 57.2, 32, 5.7, 1.8,
100, 17.9, 1, 3.2, 57.2)), .Names = c("condition", "File", "rating",
"cd"), row.names = c(NA, -272L), class = "data.frame")