Проблема получения мин от NumPy ndarray - PullRequest
0 голосов
/ 14 февраля 2019

Я получаю ошибку типа, когда пытаюсь получить минимальное значение из numpy.ndarray.Вот сообщение об ошибке:

TypeError: ufunc 'add' не содержит цикл с типами соответствия сигнатуры dtype ('S32') dtype ('S32') dtype ('S32')

Этот блок кода, из которого я получаю сообщение об ошибке:

 def laser_reading_callback(self, scan_data):
    scan_ranges = scan_data.ranges
    # np_array_scans = np.genfromtxt(np.array(scan_ranges))
    np_array_scans = np.array(scan_ranges)
    rospy.loginfo(type(np_array_scans)) # <-- prints out <type 'numpy.ndarray'> 
    rospy.loginfo("Min distance: "+np_array_scans.min()+" Array index: "+np_array_scans.argmin())

Вот как обычно выглядит массив:

[inf, inf, inf, inf, inf, 0.6639999747276306, inf, inf, inf, inf, inf, inf, inf,
 inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf,
 inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf,  
 inf, inf, inf, inf, inf, inf, inf, 0.3059999942779541, inf, 0.3109999895095825,
 0.3089999854564667, 0.3059999942779541, 0.3070000112056732, 0.3050000071525574,
 0.3050000071525574, 0.3050000071525574, 0.30399999022483826,
 0.3019999861717224, 0.3019999861717224, 0.3009999990463257, 0.3009999990463257,
 0.3009999990463257, inf, 0.3009999990463257, 0.3019999861717224,
 0.3019999861717224, 0.3009999990463257, 0.30300000309944153,
 0.3019999861717224, 0.3019999861717224, inf, inf, inf, inf, inf, inf, inf, inf,
 inf, inf, inf, inf, inf, 6.3420000076293945, inf, inf, inf, inf, inf, inf, inf,
 inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf,
 3.427999973297119, inf, inf, 5.0970001220703125, 5.146999835968018,
 5.22599983215332, 5.285999774932861, 5.320000171661377, 5.480000019073486,
 5.568999767303467, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf,
 inf, 6.293000221252441, 7.021999835968018, inf, inf, inf, inf, inf, inf, inf,
 inf, inf, inf, inf, inf, inf, inf, 0.7070000171661377, inf, 0.7170000076293945,
 inf, inf, inf, 0.4580000042915344, 0.43700000643730164, 0.42500001192092896,
 0.4230000078678131, 0.421999990940094, 0.41499999165534973, inf,
 1.180999994277954, 1.055999994277954, inf, inf, inf, inf, inf, inf,
 1.7489999532699585, 1.7549999952316284, 1.7569999694824219, inf, inf,
 4.76800012588501, 4.695000171661377, inf, inf, 4.7729997634887695,
 4.7729997634887695, 4.770999908447266, 4.810999870300293, 4.794000148773193,
 4.817999839782715, 4.835999965667725, inf, inf, 2.309999942779541,
 2.2219998836517334, 2.1559998989105225, 2.1419999599456787, 2.1630001068115234,
 2.2829999923706055, inf, inf, inf, inf, inf, 5.927000045776367,
 5.660999774932861, inf, inf, inf, inf, inf, inf, inf, 0.6470000147819519, inf,
 inf, inf, inf, inf, 2.9130001068115234, 2.9739999771118164, 2.99399995803833,
 2.944000005722046, 2.9630000591278076, 3.0179998874664307, 3.0439999103546143,
 3.0989999771118164, 3.177000045776367, 3.247999906539917, 3.2909998893737793,
 inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf,
 inf, inf, inf, inf, inf, inf, inf, inf, 9.274999618530273, 9.194000244140625,
 9.170000076293945, inf, inf, inf, inf, inf, inf, inf, inf, inf,
 9.038000106811523, inf, inf, inf, 1.812000036239624, 5.747000217437744,
 5.8420000076293945, inf, 8.569999694824219, 8.522000312805176, inf, inf, inf,
 inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf,
 6.281000137329102, 6.132999897003174, 6.236999988555908, inf, 9.42300033569336,
 9.114999771118164, inf, inf, inf, inf, inf, inf, inf, inf, inf,
 7.169000148773193, 7.130000114440918, inf, inf, inf, inf, 6.449999809265137,
 6.315000057220459, 6.308000087738037, inf, 2.5329999923706055, inf,
 2.484999895095825, inf, inf, inf, inf, inf, 5.4070000648498535,
 2.756999969482422, 2.6029999256134033, 2.563999891281128, 2.5480000972747803,
 2.556999921798706, 2.63100004196167, 2.6670000553131104, 4.801000118255615,
 inf, 1.3650000095367432, 1.3559999465942383, 1.3589999675750732,
 1.3339999914169312, 1.3140000104904175, 1.309000015258789, 1.3040000200271606,
 1.3289999961853027, 1.3769999742507935, 4.690999984741211, 4.614999771118164,
 4.545000076293945, 4.303999900817871, 4.263000011444092, 4.270999908447266,
 4.564000129699707, 4.565999984741211, 4.558000087738037, 4.552000045776367,
 4.5329999923706055, 4.550000190734863, 4.534999847412109, 4.414999961853027,
 4.427000045776367, inf, inf, inf]

Вопросы:

  • Как получить минимальное значение из массива?
  • Что вернет argmin(), если есть 2 или более элементов с одинаковым минимальным значением?
  • Почему тип возвращается как ndarray, когда это одномерный массив?

Контекст: я получаю сканированные диапазоны из системы LiDAR.Вышеприведенный массив - это диапазоны сканирования, которые выдает LiDAR

1 Ответ

0 голосов
/ 14 февраля 2019

Вы не можете использовать + со строкой и пустым массивом.Просто измените

rospy.loginfo("Min distance: "+np_array_scans.min()+" Array index: "
              +np_array_scans.argmin())

на

rospy.loginfo("Min distance: "+str(np_array_scans.min())+" Array index: "
              +str(np_array_scans.argmin()))

, и оно должно работать.

Вопрос1: Как получить минимальное значение из массива?

Ans1: используйте arr.min(), в котором arr является numpy.ndarray.

Вопрос2: Что будет возвращать argmin (), если есть 2 или более элементов с одинаковым минимальным значением?

Ans2: Если arr является одномерным массивом Numpy, arr.argmin будет возвращать только один индекс, даже если существует несколько минимальных значений.Вы можете использовать np.where(arr==np.min(arr))[0], чтобы получить индексы всех минимальных значений.

Вопрос3: Почему тип возвращается как ndarray, когда он является одномерным массивом?

Ans3: 1-D массивявляется действительным numpy.ndarray тоже.

...