Благодаря minorlogic и CjLib , я попробовал следующее:
public Quaternion QuaternionLerpOn3Axis(
Quaternion rot1,
Quaternion rot2,
Vector3 lerpSpeed
) {
if (rot1 != rot2) {
float lerpSpeedPitch = lerpSpeed.x * Time.deltaTime;
float lerpSpeedYaw = lerpSpeed.y * Time.deltaTime;
float lerpSpeedRoll = lerpSpeed.z * Time.deltaTime;
// Lerp up direction
Vector3 vecUp = Vector3.Slerp(
rot1 * Vector3.up,
rot2 * Vector3.up,
lerpSpeedRoll
);
// Get new rotation with lerped yaw/pitch
Quaternion rotation = QuaternionUtil.Sterp(
rot1,
rot2,
rot1 * Vector3.right,
lerpSpeedYaw,
lerpSpeedPitch,
QuaternionUtil.SterpMode.Slerp
);
// Look at new direction and return rotation
return Quaternion.LookRotation(
rotation * rot1 * Vector3.forward,
vecUp
);
} else {
return rot1;
}
}
Чтобы попробовать это без загрузки CjLib, вот весь код, включая соответствующие части для декодирования свинга/ twist:
public Quaternion QuaternionLerpOn3Axis(
Quaternion rot1,
Quaternion rot2,
Vector3 lerpSpeed
) {
if (rot1 != rot2) {
float lerpSpeedPitch = lerpSpeed.x * Time.deltaTime;
float lerpSpeedYaw = lerpSpeed.y * Time.deltaTime;
float lerpSpeedRoll = lerpSpeed.z * Time.deltaTime;
// Lerp up direction
Vector3 vecUp = Vector3.Slerp(
rot1 * Vector3.up,
rot2 * Vector3.up,
lerpSpeedRoll
);
// Get difference between two rotations
Quaternion q = rot2 * Quaternion.Inverse(rot1);
// Decompose quaternion into two axis
Quaternion rotYaw;
Quaternion rotPitch;
DecomposeSwingTwist(
q,
rot1 * Vector3.right,
out rotYaw,
out rotPitch
);
// Lerp yaw & pitch
rotYaw = Quaternion.Slerp(Quaternion.identity, rotYaw, lerpSpeedYaw);
rotPitch = Quaternion.Slerp(Quaternion.identity, rotPitch, lerpSpeedPitch);
// Look at new direction and return rotation
return Quaternion.LookRotation(
rotPitch * rotYaw * rot1 * Vector3.forward,
vecUp
);
} else {
return rot1;
}
}
public static void DecomposeSwingTwist(
Quaternion q,
Vector3 twistAxis,
out Quaternion swing,
out Quaternion twist
) {
Vector3 r = new Vector3(q.x, q.y, q.z); // (rotation axis) * cos(angle / 2)
float Epsilon = 1.0e-16f;
// Singularity: rotation by 180 degree
if (r.sqrMagnitude < Epsilon) {
Vector3 rotatedTwistAxis = q * twistAxis;
Vector3 swingAxis = Vector3.Cross(twistAxis, rotatedTwistAxis);
if (swingAxis.sqrMagnitude > Epsilon) {
float swingAngle = Vector3.Angle(twistAxis, rotatedTwistAxis);
swing = Quaternion.AngleAxis(swingAngle, swingAxis);
} else {
// More singularity: rotation axis parallel to twist axis
swing = Quaternion.identity; // no swing
}
// Always twist 180 degree on singularity
twist = Quaternion.AngleAxis(180.0f, twistAxis);
return;
}
// Formula & proof:
// http://www.euclideanspace.com/maths/geometry/rotations/for/decomposition/
Vector3 p = Vector3.Project(r, twistAxis);
twist = new Quaternion(p.x, p.y, p.z, q.w);
twist = Normalize(twist);
swing = q * Quaternion.Inverse(twist);
}
public static Quaternion Normalize(Quaternion q) {
float magInv = 1.0f / Magnitude(q);
return new Quaternion(magInv * q.x, magInv * q.y, magInv * q.z, magInv * q.w);
}
public static float Magnitude(Quaternion q) {
return Mathf.Sqrt(q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w);
}
К настоящему времени это единственный способ, с помощью которого я мог бы достичь скачка кватерниона (ов) с разными скоростями на трех разных осях с достаточно приемлемым результатом.
Но в моеммнение, что это не настоящее математическое решение, оно не очень хорошо работает, если значения lerp ниже ~ 1.5f (особенно по оси Z / Roll), и у него много накладных расходов.
Есть идеи, какрешить эту головоломку с меньшим / лучшим кодом?