Ваши данные уже близки к формату csr, поэтому я предлагаю использовать это:
import numpy as np
from scipy import sparse
from itertools import chain
# create an example
m, n = 20, 10
X = np.random.random((m, n)) < 0.1
Y = [list(np.where(y)[0]) for y in X]
# construct the sparse matrix
indptr = np.fromiter(chain((0,), map(len, Y)), int, len(Y) + 1).cumsum()
indices = np.fromiter(chain.from_iterable(Y), int, indptr[-1])
data = np.ones_like(indices)
S = sparse.csr_matrix((data, indices, indptr), (m, n))
# or
S = sparse.csr_matrix((data, indices, indptr))
# check
assert np.all(S==X)