Я уже некоторое время использую python и внес некоторые улучшения, но для меня это новая ошибка.Я пытаюсь научиться анализировать социальные сети для своей карьеры, и поэтому я пробую этот набор кода здесь .
Я обнаружил одну ошибку, но эту, которая появляетсяв строке 81 это поставило меня в тупик, так как я не понимаю, почему функция "def get_user_objects (follower_ids):" не возвращает ничего и что мне нужно изменить, в соответствии с предыдущим советом по другим вопросам здесь.
Вот сценарий к этому пункту для простоты.Вся помощь приветствуется.
Ошибка, которую следует повторить, - это TypeError: объект типа 'NoneType' не имеет len ()
from tweepy import OAuthHandler
from tweepy import API
from collections import Counter
from datetime import datetime, date, time, timedelta
import sys
import json
import os
import io
import re
import time
# Helper functions to load and save intermediate steps
def save_json(variable, filename):
with io.open(filename, "w", encoding="utf-8") as f:
f.write(str(json.dumps(variable, indent=4, ensure_ascii=False)))
def load_json(filename):
ret = None
if os.path.exists(filename):
try:
with io.open(filename, "r", encoding="utf-8") as f:
ret = json.load(f)
except:
pass
return ret
def try_load_or_process(filename, processor_fn, function_arg):
load_fn = None
save_fn = None
if filename.endswith("json"):
load_fn = load_json
save_fn = save_json
else:
load_fn = load_bin
save_fn = save_bin
if os.path.exists(filename):
print("Loading " + filename)
return load_fn(filename)
else:
ret = processor_fn(function_arg)
print("Saving " + filename)
save_fn(ret, filename)
return ret
# Some helper functions to convert between different time formats and
perform date calculations
def twitter_time_to_object(time_string):
twitter_format = "%a %b %d %H:%M:%S %Y"
match_expression = "^(.+)\s(\+[0-9][0-9][0-9][0-9])\s([0-9][0-9][0-9]
[09])$"
match = re.search(match_expression, time_string)
if match is not None:
first_bit = match.group(1)
second_bit = match.group(2)
last_bit = match.group(3)
new_string = first_bit + " " + last_bit
date_object = datetime.strptime(new_string, twitter_format)
return date_object
def time_object_to_unix(time_object):
return int(time_object.strftime("%s"))
def twitter_time_to_unix(time_string):
return time_object_to_unix(twitter_time_to_object(time_string))
def seconds_since_twitter_time(time_string):
input_time_unix = int(twitter_time_to_unix(time_string))
current_time_unix = int(get_utc_unix_time())
return current_time_unix - input_time_unix
def get_utc_unix_time():
dts = datetime.utcnow()
return time.mktime(dts.timetuple())
# Get a list of follower ids for the target account
def get_follower_ids(target):
return auth_api.followers_ids(target)
# Twitter API allows us to batch query 100 accounts at a time
# So we'll create batches of 100 follower ids and gather Twitter User
objects for each batch
def get_user_objects(follower_ids):
batch_len = 100
num_batches = len(follower_ids)/100
batches = (follower_ids[i:i+batch_len] for i in range(0,
len(follower_ids), batch_len))
all_data = []
for batch_count, batch in enumerate(batches):
sys.stdout.write("\r")
sys.stdout.flush()
sys.stdout.write("Fetching batch: " + str(batch_count) + "/" +
str(num_batches))
sys.stdout.flush()
users_list = auth_api.lookup_users(user_ids=batch)
users_json = (map(lambda t: t._json, users_list))
all_data += users_json
return all_data
# Creates one week length ranges and finds items that fit into those range
boundaries
def make_ranges(user_data, num_ranges=20):
range_max = 604800 * num_ranges
range_step = range_max/num_ranges
# We create ranges and labels first and then iterate these when going
through the whole list
# of user data, to speed things up
ranges = {}
labels = {}
for x in range(num_ranges):
start_range = x * range_step
end_range = x * range_step + range_step
label = "%02d" % x + " - " + "%02d" % (x+1) + " weeks"
labels[label] = []
ranges[label] = {}
ranges[label]["start"] = start_range
ranges[label]["end"] = end_range
for user in user_data:
if "created_at" in user:
account_age = seconds_since_twitter_time(user["created_at"])
for label, timestamps in ranges.iteritems():
if account_age > timestamps["start"] and account_age <
timestamps["end"]:
entry = {}
id_str = user["id_str"]
entry[id_str] = {}
fields = ["screen_name", "name", "created_at",
"friends_count", "followers_count", "favourites_count", "statuses_count"]
for f in fields:
if f in user:
entry[id_str][f] = user[f]
labels[label].append(entry)
return labels
if __name__ == "__main__":
account_list = []
if (len(sys.argv) > 1):
account_list = sys.argv[1:]
if len(account_list) < 1:
print("No parameters supplied. Exiting.")
sys.exit(0)
consumer_key="XXXXXXX"
consumer_secret="XXXXXX"
access_token="XXXXXXX"
access_token_secret="XXXXXXXX"
auth = OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
auth_api = API(auth)
for target in account_list:
print("Processing target: " + target)
# Get a list of Twitter ids for followers of target account and save it
filename = target + "_follower_ids.json"
follower_ids = try_load_or_process(filename, get_follower_ids,
target)
# Fetch Twitter User objects from each Twitter id found and save the data
filename = target + "_followers.json"
user_objects = try_load_or_process(filename, get_user_objects,
follower_ids)
total_objects = len(user_objects)
# Record a few details about each account that falls between specified age
ranges
ranges = make_ranges(user_objects)
filename = target + "_ranges.json"
save_json(ranges, filename)
# Print a few summaries
print
print("\t\tFollower age ranges")
print("\t\t===================")
total = 0
following_counter = Counter()
for label, entries in sorted(ranges.iteritems()):
print("\t\t" + str(len(entries)) + " accounts were created
within " + label)
total += len(entries)
for entry in entries:
for id_str, values in entry.iteritems():
if "friends_count" in values:
following_counter[values["friends_count"]] += 1
print("\t\tTotal: " + str(total) + "/" + str(total_objects))
print
print("\t\tMost common friends counts")
print("\t\t==========================")
total = 0
for num, count in following_counter.most_common(20):
total += count
print("\t\t" + str(count) + " accounts are following " +
str(num) + " accounts")
print("\t\tTotal: " + str(total) + "/" + str(total_objects))
print
print