Вот графическое средство, использующее уравнение хроматографии Ван-Димтера, оно хорошо подходит для ваших данных.
import numpy, scipy, matplotlib
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
# mud
xData=numpy.array([0.0014700734999999996,
0.0011840320799999997,
0.0014232304799999995,
0.0008501509799999997,
0.0007235751599999999,
0.0005770661399999999,
0.0005581295999999999,
0.00028703807999999994,
0.00014850233999999998])
# F
yData=numpy.array([0.5750972123893806,
0.5512177433628319,
0.5638906194690266,
0.5240915044247788,
0.5217873451327435,
0.5066008407079646,
0.5027256637168142,
0.4847113274336283,
0.46502123893805314])
def func(x, a, b, c): # Van Deemter chromatography equation
return a + b/x + c*x
# these are the same as the scipy defaults
initialParameters = numpy.array([1.0, 1.0, 1.0])
# curve fit the test data
fittedParameters, pcov = curve_fit(func, xData, yData, initialParameters)
modelPredictions = func(xData, *fittedParameters)
absError = modelPredictions - yData
SE = numpy.square(absError) # squared errors
MSE = numpy.mean(SE) # mean squared errors
RMSE = numpy.sqrt(MSE) # Root Mean Squared Error, RMSE
Rsquared = 1.0 - (numpy.var(absError) / numpy.var(yData))
print('Parameters:', fittedParameters)
print('RMSE:', RMSE)
print('R-squared:', Rsquared)
print()
##########################################################
# graphics output section
def ModelAndScatterPlot(graphWidth, graphHeight):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
axes = f.add_subplot(111)
# first the raw data as a scatter plot
axes.plot(xData, yData, 'D')
# create data for the fitted equation plot
xModel = numpy.linspace(min(xData), max(xData))
yModel = func(xModel, *fittedParameters)
# now the model as a line plot
axes.plot(xModel, yModel)
axes.set_xlabel('X Data (mud)') # X axis data label
axes.set_ylabel('Y Data (F)') # Y axis data label
plt.show()
plt.close('all') # clean up after using pyplot
graphWidth = 800
graphHeight = 600
ModelAndScatterPlot(graphWidth, graphHeight)