Панды: создание временной серии по годичным процентилям - PullRequest
0 голосов
/ 08 октября 2018

У меня есть следующий фрейм данных:

date  = ['2015-02-03 23:00:00','2015-02-03 23:30:00','2015-02-04 00:00:00','2015-02-04 00:30:00','2015-02-04 01:00:00','2015-02-04 01:30:00','2015-02-04 02:00:00','2015-02-04 02:30:00','2015-02-04 03:00:00','2015-02-04 03:30:00','2015-02-04 04:00:00','2015-02-04 04:30:00','2015-02-04 05:00:00','2015-02-04 05:30:00','2015-02-04 06:00:00','2015-02-04 06:30:00','2015-02-04 07:00:00','2015-02-04 07:30:00','2015-02-04 08:00:00','2015-02-04 08:30:00','2015-02-04 09:00:00','2015-02-04 09:30:00','2015-02-04 10:00:00','2015-02-04 10:30:00','2015-02-04 11:00:00','2015-02-04 11:30:00','2015-02-04 12:00:00','2015-02-04 12:30:00','2015-02-04 13:00:00','2015-02-04 13:30:00','2015-02-04 14:00:00','2015-02-04 14:30:00','2015-02-04 15:00:00','2015-02-04 15:30:00','2015-02-04 16:00:00','2015-02-04 16:30:00','2015-02-04 17:00:00','2015-02-04 17:30:00','2015-02-04 18:00:00','2015-02-04 18:30:00','2015-02-04 19:00:00','2015-02-04 19:30:00','2015-02-04 20:00:00','2015-02-04 20:30:00','2015-02-04 21:00:00','2015-02-04 21:30:00','2015-02-04 22:00:00','2015-02-04 22:30:00','2015-02-04 23:00:00','2015-02-04 23:30:00']
value = [33.24  , 31.71  , 34.39  , 34.49  , 34.67  , 34.46  , 34.59  , 34.83  , 35.78  , 33.03  , 35.49  , 33.79  , 36.12  , 37.09  , 39.54  , 41.19  , 45.99  , 50.23  , 46.72  , 47.47  , 48.46  , 48.38  , 48.40  , 48.13  , 38.35  , 38.19  , 38.12  , 38.05  , 38.06  , 37.83  , 37.49  , 37.41 , 41.84  , 42.26 , 44.09  , 48.85  , 50.07 , 50.94  , 51.09  , 50.60  , 47.39  , 45.57  , 45.03  , 44.98  , 41.32  , 40.37  , 41.12  , 39.33  , 35.38  , 33.44  ]
df = pd.DataFrame({'value':value,'index':date})
df.index = pd.to_datetime(df['index'],format='%Y-%m-%d %H:%M')
df.drop(['index'],axis=1,inplace=True)
print(df)    

                     value
index                     
2015-02-03 23:00:00  33.24
2015-02-03 23:30:00  31.71
2015-02-04 00:00:00  34.39
2015-02-04 00:30:00  34.49
2015-02-04 01:00:00  34.67
2015-02-04 01:30:00  34.46

Я хотел бы добавить в столбец значения столбец, чтобы увидеть, превосходит ли значение 90-процентный процентиль значений для этого года или между 80% и90% -ный процентиль не входит в этот год.

Я знаю, что могу использовать функцию вырезки панд, моя проблема в том, как передать в нее данные процентили каждого года (переменные с именами 'PERCENTILE80_of_considered_year' и 'PERCENTILE90_of_considered_year'):

binned = pd.cut(x=df.value, bins=[-np.inf,PERCENTILE80_of_considered_year, PERCENTILE90_of_considered_year, np.inf], right=False, labels=['<P80', 'P80_90', '>P90'])

Ожидаемый результат будет примерно таким (только иллюстративным):

                     value   bin
index                     
2015-02-03 23:00:00  33.24   P80_90 
2015-02-03 23:30:00  31.71   <P80
2015-02-04 00:00:00  34.39   P80_90
2015-02-04 00:30:00  34.49  P80_90
2015-02-04 01:00:00  34.67   >P90
2015-02-04 01:30:00  34.46   P80_90

Кто-нибудь знает, как это сделать эффективно?Или любой другой подход, который будет эффективным?

Большое спасибо,

Ответы [ 2 ]

0 голосов
/ 08 октября 2018

Вы можете groupby год и apply функция для каждой группы.

def get_bin(group):
    p80 = group.value.quantile(0.8)
    p90 = group.value.quantile(0.9)

    group['bin'] = pd.cut(
        x=group.value,
        bins=[-np.inf, p80, p90, np.inf],
        right=False,
        labels=['<P80', 'P80_90', '>P90'])
    return group

df.groupby(lambda x: x.year).apply(get_bin)

#                      value     bin
# index
# 2015-02-03 23:00:00  33.24    <P80
# 2015-02-04 07:00:00  45.99    <P80
# 2015-02-04 07:30:00  50.23    >P90
# 2015-02-04 09:00:00  48.46  P80_90
# 2015-02-04 10:00:00  48.40  P80_90
0 голосов
/ 08 октября 2018

Не уверен, что я получу ваш вопрос полностью, но я рассчитал бы процентили следующим образом:

p80 = df.value.quantile(0.8)
p90= df.value.quantile(0.9)
df['binned'] = pd.cut(x=df.value, bins=[-np.inf, p80, p90, np.inf], right=False, labels=['<P80', 'P80_90', '>P90'])

В вашем примере только один год, в случае нескольких лет вы можете сделать то же самое, но на groups, а не полный df.Есть много способов сделать это, но один из вариантов:

for year in df.index.year.unique():
   mask = df.index.year == year
   df.loc[mask, 'binned'] = pd.cut(x=df.value 
               , bins=[-np.inf, df[mask].value.quantile(0.8), df[mask].value.quantile(0.9), np.inf]
                , right=False, labels=['<P80', 'P80_90', '>P90'])
df.head()
...