В проекте, над которым я работаю, у меня есть две таблицы:
consumption
: содержит исторические заказы клиентов с полями, в которых указаны характеристики купленного ими продукта (один продукт настрока) product
: содержит текущий товарный запас
Ядром базы данных является InnoDB.
Цели:
- Приложениедолжен отображать совпадения с обеих сторон, я имею в виду:
- Когда я перечисляю текущий запас товаров, я хочу показать столбец, который отображает, сколько исторических заказов соответствуют определенному товару
- Когда я перечисляюисторические заказы, я хочу увидеть, сколько продуктов соответствует определенному историческому заказу
Структура базы данных для таблиц consumption
и product
плюс другие связанные таблицы:
CREATE TABLE `consumption` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`created_by_id` INT(11) NULL DEFAULT NULL,
`client_id` INT(11) NOT NULL,
`data_import_id` INT(11) NULL DEFAULT NULL,
`tmp_consumption_id` INT(11) NULL DEFAULT NULL,
`material_id` INT(11) NULL DEFAULT NULL,
`quality_id` INT(11) NULL DEFAULT NULL,
`thick` DECIMAL(10,3) NULL DEFAULT NULL,
`thick_max` DECIMAL(10,3) NULL DEFAULT NULL,
`width` DECIMAL(10,2) NULL DEFAULT NULL,
`width_max` DECIMAL(10,2) NULL DEFAULT NULL,
`long` INT(11) NULL DEFAULT NULL,
`long_max` INT(11) NULL DEFAULT NULL,
`purchase_price` DECIMAL(10,2) NULL DEFAULT NULL,
`sale_price` DECIMAL(10,2) NULL DEFAULT NULL,
`comments` VARCHAR(255) NULL DEFAULT NULL,
`annual_consumption` DECIMAL(10,3) NULL DEFAULT NULL,
`type` ENUM('consumption','request') NULL DEFAULT 'consumption',
`date_add` DATETIME NOT NULL,
`date_upd` DATETIME NOT NULL,
`covering_grammage` VARCHAR(64) NULL DEFAULT NULL,
`asp_sup_acab` VARCHAR(64) NULL DEFAULT NULL,
PRIMARY KEY (`id`),
INDEX `fk_consumption_client1` (`client_id`),
INDEX `created_by_id` (`created_by_id`),
INDEX `material_id` (`material_id`),
INDEX `quality_id` (`quality_id`),
CONSTRAINT `consumption_ibfk_1` FOREIGN KEY (`material_id`) REFERENCES `material` (`id`) ON UPDATE NO ACTION ON DELETE NO ACTION,
CONSTRAINT `consumption_ibfk_2` FOREIGN KEY (`quality_id`) REFERENCES `quality` (`id`) ON UPDATE NO ACTION ON DELETE NO ACTION,
CONSTRAINT `fk_consumption_client1` FOREIGN KEY (`client_id`) REFERENCES `client` (`id`) ON UPDATE NO ACTION ON DELETE NO ACTION
)
COLLATE='utf8_general_ci'
ENGINE=InnoDB
AUTO_INCREMENT=30673
;
CREATE TABLE `product` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`warehouse_id` INT(11) NULL DEFAULT NULL,
`created_by_id` INT(11) NULL DEFAULT NULL,
`data_import_id` INT(11) NULL DEFAULT NULL,
`tmp_product_id` INT(11) NULL DEFAULT NULL,
`code` VARCHAR(32) NOT NULL,
`material_id` INT(11) NULL DEFAULT NULL,
`quality_id` INT(11) NULL DEFAULT NULL,
`covering_id` INT(11) NULL DEFAULT NULL,
`finish_id` INT(11) NULL DEFAULT NULL,
`source` VARCHAR(128) NULL DEFAULT NULL,
`thickness` DECIMAL(10,3) NULL DEFAULT NULL,
`width` INT(11) NULL DEFAULT NULL,
`tons` DECIMAL(10,3) NULL DEFAULT NULL,
`re` INT(11) NULL DEFAULT NULL,
`rm` INT(11) NULL DEFAULT NULL,
`a_percent` INT(11) NULL DEFAULT NULL,
`comments` VARCHAR(255) NULL DEFAULT NULL,
`price` DECIMAL(10,2) NULL DEFAULT NULL,
`deleted` TINYINT(1) NOT NULL DEFAULT '0',
`date_add` DATETIME NOT NULL,
`date_upd` DATETIME NOT NULL,
PRIMARY KEY (`id`),
INDEX `warehouse_id` (`warehouse_id`),
INDEX `material_id` (`material_id`),
INDEX `quality_id` (`quality_id`),
INDEX `covering_id` (`covering_id`),
INDEX `finish_id` (`finish_id`),
CONSTRAINT `product_ibfk_1` FOREIGN KEY (`material_id`) REFERENCES `material` (`id`) ON UPDATE NO ACTION ON DELETE NO ACTION,
CONSTRAINT `product_ibfk_2` FOREIGN KEY (`quality_id`) REFERENCES `quality` (`id`) ON UPDATE NO ACTION ON DELETE NO ACTION,
CONSTRAINT `product_ibfk_3` FOREIGN KEY (`covering_id`) REFERENCES `covering` (`id`) ON UPDATE NO ACTION ON DELETE NO ACTION,
CONSTRAINT `product_ibfk_4` FOREIGN KEY (`finish_id`) REFERENCES `finish` (`id`) ON UPDATE NO ACTION ON DELETE NO ACTION,
CONSTRAINT `product_ibfk_5` FOREIGN KEY (`warehouse_id`) REFERENCES `warehouse` (`id`) ON UPDATE NO ACTION ON DELETE NO ACTION
)
COLLATE='utf8_general_ci'
ENGINE=InnoDB
AUTO_INCREMENT=740
;
CREATE TABLE `client` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`zone_id` INT(11) NULL DEFAULT NULL,
`zone2_id` INT(11) NULL DEFAULT NULL,
`code` VARCHAR(64) NOT NULL,
`business_name` VARCHAR(255) NULL DEFAULT NULL,
`fiscal_name` VARCHAR(255) NULL DEFAULT NULL,
`nif` VARCHAR(15) NULL DEFAULT NULL,
`contact_short_name` VARCHAR(128) NULL DEFAULT NULL,
`contact_full_name` VARCHAR(128) NULL DEFAULT NULL,
`email` VARCHAR(255) NULL DEFAULT NULL,
`group` VARCHAR(255) NULL DEFAULT NULL,
`status` TINYINT(1) NOT NULL DEFAULT '1',
`date_add` DATETIME NOT NULL,
`date_upd` DATETIME NOT NULL,
PRIMARY KEY (`id`),
UNIQUE INDEX `code_UNIQUE` (`code`),
INDEX `zone_id` (`zone_id`),
INDEX `zone2_id` (`zone2_id`),
CONSTRAINT `client_ibfk_1` FOREIGN KEY (`zone_id`) REFERENCES `zone` (`id`) ON UPDATE NO ACTION ON DELETE NO ACTION
)
COLLATE='utf8_general_ci'
ENGINE=InnoDB
AUTO_INCREMENT=443
;
CREATE TABLE `client_group` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`code` VARCHAR(15) NOT NULL,
`date_add` DATETIME NOT NULL,
`date_upd` DATETIME NOT NULL,
PRIMARY KEY (`id`),
UNIQUE INDEX `code` (`code`)
)
COLLATE='utf8_general_ci'
ENGINE=InnoDB
AUTO_INCREMENT=49
;
CREATE TABLE `client_has_group` (
`client_id` INT(11) NOT NULL,
`group_id` INT(11) NOT NULL,
INDEX `client_id` (`client_id`),
INDEX `group_id` (`group_id`),
CONSTRAINT `client_has_group_ibfk_1` FOREIGN KEY (`client_id`) REFERENCES `client` (`id`) ON UPDATE NO ACTION ON DELETE NO ACTION,
CONSTRAINT `client_has_group_ibfk_2` FOREIGN KEY (`group_id`) REFERENCES `client_group` (`id`) ON UPDATE NO ACTION ON DELETE NO ACTION
)
COLLATE='utf8_general_ci'
ENGINE=InnoDB
;
CREATE TABLE `covering` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`code` VARCHAR(128) NOT NULL,
`group` VARCHAR(128) NULL DEFAULT NULL,
`equivalence` VARCHAR(128) NULL DEFAULT NULL,
`date_add` DATETIME NOT NULL,
`date_upd` DATETIME NOT NULL,
PRIMARY KEY (`id`),
UNIQUE INDEX `code_UNIQUE` (`code`)
)
COLLATE='utf8_general_ci'
ENGINE=InnoDB
AUTO_INCREMENT=55
;
CREATE TABLE `finish` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`code` VARCHAR(128) NOT NULL,
`group` VARCHAR(128) NULL DEFAULT NULL,
`equivalence` VARCHAR(128) NULL DEFAULT NULL,
`date_add` DATETIME NOT NULL,
`date_upd` DATETIME NOT NULL,
PRIMARY KEY (`id`),
UNIQUE INDEX `code_UNIQUE` (`code`)
)
COLLATE='utf8_general_ci'
ENGINE=InnoDB
AUTO_INCREMENT=42
;
CREATE TABLE `material` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`code` VARCHAR(128) NOT NULL,
`group` VARCHAR(128) NULL DEFAULT NULL,
`equivalence` VARCHAR(128) NULL DEFAULT NULL,
`date_add` DATETIME NOT NULL,
`date_upd` DATETIME NOT NULL,
PRIMARY KEY (`id`),
UNIQUE INDEX `code_UNIQUE` (`code`),
INDEX `group` (`group`),
INDEX `equivalence` (`equivalence`)
)
COLLATE='utf8_general_ci'
ENGINE=InnoDB
AUTO_INCREMENT=46
;
CREATE TABLE `quality` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`code` VARCHAR(128) NOT NULL,
`group` VARCHAR(128) NULL DEFAULT NULL,
`equivalence` VARCHAR(128) NULL DEFAULT NULL,
`date_add` DATETIME NOT NULL,
`date_upd` DATETIME NOT NULL,
PRIMARY KEY (`id`),
UNIQUE INDEX `code_UNIQUE` (`code`),
INDEX `group` (`group`),
INDEX `equivalence` (`equivalence`)
)
COLLATE='utf8_general_ci'
ENGINE=InnoDB
AUTO_INCREMENT=980
;
CREATE TABLE `user_filter` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`user_id` INT(11) NOT NULL,
`filter_type` ENUM('consumption','product') NOT NULL DEFAULT 'consumption',
`name` VARCHAR(255) NOT NULL,
`is_default` TINYINT(1) NOT NULL DEFAULT '0',
`client_status` TINYINT(1) NULL DEFAULT NULL,
`client_group` VARCHAR(45) NULL DEFAULT NULL,
`material` VARCHAR(15) NULL DEFAULT NULL,
`quality` VARCHAR(64) NULL DEFAULT NULL,
`thickness` VARCHAR(45) NULL DEFAULT NULL,
`width` VARCHAR(45) NULL DEFAULT NULL,
`tons` VARCHAR(45) NULL DEFAULT NULL,
`covering` VARCHAR(45) NULL DEFAULT NULL,
`finish` VARCHAR(45) NULL DEFAULT NULL,
`re` VARCHAR(45) NULL DEFAULT NULL,
`rm` VARCHAR(45) NULL DEFAULT NULL,
`a_percent` VARCHAR(45) NULL DEFAULT NULL,
`comments` VARCHAR(255) NULL DEFAULT NULL,
`price` VARCHAR(45) NULL DEFAULT NULL,
`warehouse` VARCHAR(45) NULL DEFAULT NULL,
`date` VARCHAR(45) NULL DEFAULT NULL,
`type` ENUM('consumption','request') NULL DEFAULT NULL,
`date_add` DATETIME NOT NULL,
`date_upd` DATETIME NOT NULL,
PRIMARY KEY (`id`),
INDEX `fk_user_filter_user1` (`user_id`),
INDEX `filter_type` (`filter_type`),
CONSTRAINT `fk_user_filter_user1` FOREIGN KEY (`user_id`) REFERENCES `user` (`id`) ON UPDATE NO ACTION ON DELETE NO ACTION
)
COLLATE='utf8_general_ci'
ENGINE=InnoDB
AUTO_INCREMENT=5
;
CREATE TABLE `warehouse` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`name` VARCHAR(128) NOT NULL,
`zone_id` INT(11) NULL DEFAULT NULL,
`zone2_id` INT(11) NULL DEFAULT NULL,
`date_add` DATETIME NOT NULL,
`date_upd` DATETIME NOT NULL,
PRIMARY KEY (`id`),
INDEX `zone_id` (`zone_id`),
INDEX `zone2_id` (`zone2_id`),
CONSTRAINT `warehouse_ibfk_1` FOREIGN KEY (`zone_id`) REFERENCES `zone` (`id`) ON UPDATE NO ACTION ON DELETE NO ACTION
)
COLLATE='utf8_general_ci'
ENGINE=InnoDB
AUTO_INCREMENT=37
;
CREATE TABLE `zone` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`zone2_id` INT(11) NULL DEFAULT NULL,
`name` VARCHAR(128) NOT NULL,
`date_add` DATETIME NOT NULL,
`date_upd` DATETIME NOT NULL,
PRIMARY KEY (`id`),
INDEX `zone2_id` (`zone2_id`)
)
COLLATE='utf8_general_ci'
ENGINE=InnoDB
AUTO_INCREMENT=49
;
Что я сделал, чтобы найти совпадения между двумя таблицами:
Я создал запрос LEFT JOIN между таблицами consumption
и product
(который также объединяется с дополнительными таблицами, если требуется).
выглядит примерно так:
SELECT cons.`id` as `consumption_id`, cons.`client_id` as `consumption_client_id`, cons.`material_id` as `consumption_material_id`, cons.`quality_id` as `consumption_quality_id`, cons.`thick` as `consumption_thick`, cons.`thick_max` as `consumption_thick_max`, cons.`width` as `consumption_width`, cons.`width_max` as `consumption_width_max`, cons.`long` as `consumption_long`, cons.`long_max` as `consumption_long_max`, cons.`type` as `consumption_type`, cons.`date_add` as `consumption_date_add`, prod.`id` as `product_id`, prod.`warehouse_id` as `product_warehouse_id`, prod.`code` as `product_code`, prod.`material_id` as `product_material_id`, prod.`quality_id` as `product_quality_id`, prod.`covering_id` as `product_covering_id`, prod.`finish_id` as `product_finish_id`, prod.`thickness` as `product_thickness`, prod.`width` as `product_width`, prod.`tons` as `product_tons`
FROM consumption cons
INNER JOIN client cli
ON cli.id=cons.client_id
LEFT JOIN client_has_group cli_gr
ON cli_gr.client_id=cons.client_id
LEFT JOIN product prod
ON
(
(cons.material_id=prod.material_id)
OR
prod.material_id IN (
SELECT id FROM material WHERE `equivalence`=(
SELECT `equivalence` FROM material WHERE id=cons.material_id
)
AND `group`=(
SELECT `group` FROM material WHERE id=cons.material_id
)
)
)
AND
(
(cons.quality_id=prod.quality_id)
OR
prod.quality_id IN (
SELECT id FROM quality WHERE `equivalence`=(
SELECT `equivalence` FROM quality WHERE id=cons.quality_id
)
AND `group`=(
SELECT `group` FROM quality WHERE id=cons.quality_id
)
)
)
AND (prod.thickness >= (cons.thick - 0.1) AND prod.thickness <= (cons.thick_max + 0.1))
AND (prod.width >= (cons.width - 1000) AND prod.width <= (cons.width_max + 1000))
WHERE 1 > 0 AND prod.deleted=0 AND cli.status=1 AND cons.date_add >= '2017-10-08 00:00:00'
GROUP BY cons.id, prod.id
Когда я хочу перечислить продукты и показать совпадения потребления для каждого продукта, у меня есть основной запрос, который просто перечисляет продукты, затем я объединяю этот запрос с предыдущимзапрос сверху и подсчет совпадений по номеру товара.
SELECT t.*,
count(f.consumption_id) AS matchesCount
FROM `product` t
LEFT JOIN (...previous query here...) f ON f.product_id=t.id
GROUP BY t.id
Другие примечания / соображения:
- Приложение использует несколько полей с одинаковыми именами в обеих таблицах, чтобы найти совпадения с помощью
ON
вJOIN
- Приложение также использует более сложную бизнес-логику, например, материал продукта может быть равным или может быть внутри таблицы или группы эквивалентности
- Пользователь может сохранять личные фильтры, которыепочему используется таблица
user_filter
, поэтому как пользователь я могу сохранить несколько «поисков» и быстро переключаться с одного на другой - Соответствия должны отображаться в реальном времени, я имею в виду, рассчитанные налетать, а не с помощью какого-либо хамства, потому что пользовательский фильтр всегда будет меняться
- Объем данных, с которыми приложение будет работать прямо сейчас, составит около 35 тыс. строк в таблице потребления и около 1,5 тыс. строк в таблице продуктов
- Сервер, на котором размещено приложение, - это выделенный сервер (64 ГБ ОЗУ) под управлением MySQL
У меня была хорошая производительность с 3k строкпотребления и 100 продуктов, теперь с потреблением 10 000+ и 600 продуктами, начинают получать время ожидания шлюза от nginx.Предположим, что запросы занимают слишком много времени.
Я уже знаю, что если причина ON
имеет много условий, она будет работать быстрее, потому что наборы результатов меньше, но если условие очень широкое, это дасттайм-аут, я думаю, что в результате строки слишком много.Может быть, объединение приведет к миллионам строк.
Я хотел бы спросить:
- Я на правильном пути, чтобы выполнять "живые совпадения" данных междуобе таблицы?Является ли использование JOIN хорошим решением?Я не могу придумать другого способа сделать это.
- Кроме попыток оптимизировать запросы и индексы, есть ли какие-либо настройки сервера, которые я мог бы сделать, чтобы в полной мере использовать преимущества серверного оборудования?
- Любые другие советыили методы от кого-то, кто сделал нечто подобное в другом проекте?
Обновление 1: добавление здесь полного запроса для перечисления продуктов с соответствиями потребления:
SELECT t.*,
count(f.consumption_id) AS matchesCount
FROM `product` t
LEFT JOIN (
SELECT cons.`id` as `consumption_id`, cons.`client_id` as `consumption_client_id`, cons.`material_id` as `consumption_material_id`, cons.`quality_id` as `consumption_quality_id`, cons.`thick` as `consumption_thick`, cons.`thick_max` as `consumption_thick_max`, cons.`width` as `consumption_width`, cons.`width_max` as `consumption_width_max`, cons.`long` as `consumption_long`, cons.`long_max` as `consumption_long_max`, cons.`type` as `consumption_type`, cons.`date_add` as `consumption_date_add`, prod.`id` as `product_id`, prod.`warehouse_id` as `product_warehouse_id`, prod.`code` as `product_code`, prod.`material_id` as `product_material_id`, prod.`quality_id` as `product_quality_id`, prod.`covering_id` as `product_covering_id`, prod.`finish_id` as `product_finish_id`, prod.`thickness` as `product_thickness`, prod.`width` as `product_width`, prod.`tons` as `product_tons`
FROM consumption cons
INNER JOIN client cli
ON cli.id=cons.client_id
LEFT JOIN client_has_group cli_gr
ON cli_gr.client_id=cons.client_id
LEFT JOIN product prod
ON
(
(cons.material_id=prod.material_id)
OR
prod.material_id IN (
SELECT id FROM material WHERE `equivalence`=(
SELECT `equivalence` FROM material WHERE id=cons.material_id
)
AND `group`=(
SELECT `group` FROM material WHERE id=cons.material_id
)
)
)
WHERE 1 > 0 AND prod.deleted=0 AND cli.status=1 AND cons.date_add >= '2017-10-08 00:00:00'
GROUP BY cons.id, prod.id
) f ON f.product_id=t.id
GROUP BY t.id
Время запроса: 00:02:41 (+ 0,078 с. Сеть).
Примечание. Подзапрос JOIN, запускаемый отдельно, создает 600 тыс. Строк.Я собираюсь как-то сгруппировать его, чтобы уменьшить его.
Обновление 2: Значительное улучшение достигается за счет подсчета внутри подзапроса и уменьшения набора результатов, используемого для JOIN
По сути, подзапрос вместо возврата 600k + строк возвращает только столько строк, сколько продуктов или потреблений, в зависимости от того, что вы ищете.Для этого matchCount был перемещен внутри подзапроса, а не снаружи, и группа была изменена в зависимости от того, какой список вы хотите отобразить.
Вот так выглядят окончательные запросы прямо сейчас:
Список продуктов потребления и подсчет, которые соответствуют каждому потреблению:
SELECT SQL_NO_CACHE `t`.*,
IFNULL(f.matchesCount, 0) AS matchesCount
FROM `consumption` `t`
LEFT JOIN
(SELECT cons.`id` AS `consumption_id`,
cons.`client_id` AS `consumption_client_id`,
cons.`material_id` AS `consumption_material_id`,
cons.`quality_id` AS `consumption_quality_id`,
cons.`thick` AS `consumption_thick`,
cons.`thick_max` AS `consumption_thick_max`,
cons.`width` AS `consumption_width`,
cons.`width_max` AS `consumption_width_max`,
cons.`long` AS `consumption_long`,
cons.`long_max` AS `consumption_long_max`,
cons.`type` AS `consumption_type`,
cons.`date_add` AS `consumption_date_add`,
prod.`id` AS `product_id`,
prod.`warehouse_id` AS `product_warehouse_id`,
prod.`code` AS `product_code`,
prod.`material_id` AS `product_material_id`,
prod.`quality_id` AS `product_quality_id`,
prod.`covering_id` AS `product_covering_id`,
prod.`finish_id` AS `product_finish_id`,
prod.`thickness` AS `product_thickness`,
prod.`width` AS `product_width`,
prod.`tons` AS `product_tons`,
count(prod.`id`) AS matchesCount
FROM consumption cons
INNER JOIN client cli ON cli.id=cons.client_id
LEFT JOIN product prod ON ((cons.material_id=prod.material_id)
OR prod.material_id IN
(SELECT id
FROM material
WHERE `equivalence`=
(SELECT `equivalence`
FROM material
WHERE id=cons.material_id )
AND `group`=
(SELECT `group`
FROM material
WHERE id=cons.material_id ) ))
AND ((cons.quality_id=prod.quality_id)
OR prod.quality_id IN
(SELECT id
FROM quality
WHERE `equivalence`=
(SELECT `equivalence`
FROM quality
WHERE id=cons.quality_id )
AND `group`=
(SELECT `group`
FROM quality
WHERE id=cons.quality_id ) ))
AND (prod.thickness >= (cons.thick - 0.1)
AND prod.thickness <= (cons.thick_max + 0.1))
AND (prod.width >= (cons.width - 1000)
AND prod.width <= (cons.width_max + 1000))
WHERE 1 > 0
AND prod.deleted=0
AND cli.status=1
AND cons.date_add >= '2017-10-08 00:00:00'
GROUP BY cons.id) f ON f.consumption_id=t.id
GROUP BY t.id
Список продуктов и подсчет потребления, которые соответствуют каждому продукту:
SELECT SQL_NO_CACHE t.*,
IFNULL(f.matchesCount, 0) AS matchesCount
FROM `product` `t`
LEFT JOIN
(SELECT cons.`id` AS `consumption_id`,
cons.`client_id` AS `consumption_client_id`,
cons.`material_id` AS `consumption_material_id`,
cons.`quality_id` AS `consumption_quality_id`,
cons.`thick` AS `consumption_thick`,
cons.`thick_max` AS `consumption_thick_max`,
cons.`width` AS `consumption_width`,
cons.`width_max` AS `consumption_width_max`,
cons.`long` AS `consumption_long`,
cons.`long_max` AS `consumption_long_max`,
cons.`type` AS `consumption_type`,
cons.`date_add` AS `consumption_date_add`,
prod.`id` AS `product_id`,
prod.`warehouse_id` AS `product_warehouse_id`,
prod.`code` AS `product_code`,
prod.`material_id` AS `product_material_id`,
prod.`quality_id` AS `product_quality_id`,
prod.`covering_id` AS `product_covering_id`,
prod.`finish_id` AS `product_finish_id`,
prod.`thickness` AS `product_thickness`,
prod.`width` AS `product_width`,
prod.`tons` AS `product_tons`,
count(cons.`id`) AS matchesCount
FROM consumption cons
INNER JOIN client cli ON cli.id=cons.client_id
LEFT JOIN product prod ON cons.material_id=prod.material_id
AND cons.quality_id=prod.quality_id
WHERE 1 > 0
AND prod.deleted=0
AND cli.status=1
GROUP BY prod.id) f ON f.product_id=t.id
WHERE deleted=0
GROUP BY t.id
Оба запроса выполняются менее чем за 1 секунду (каждый).
Примечание. Я по-прежнему использую предыдущие запросы в своем приложении, например, когда я хочу разбитьсписок продуктов, которые соответствуют одному потреблению, или наоборот.В этом случае я уже добавляю фильтр для идентификатора потребления или идентификатора продукта, который значительно уменьшает размер набора результатов.