Я пытаюсь решить с помощью MATLAB систему ODE первого порядка,
$$\left\{
\begin{array}{l}
x_{1}^{\prime }=-\frac{1}{t+1}x_{1}+x_{2} \\
x_{2}^{\prime }=-(1+e^{-2t})x_{1}-\frac{1}{t+1}x_{2}+\frac{e^{-3t}}{t+1}x_{3}
\\
x_{3}^{\prime }=-\frac{1}{t+1}x_{3}+x_{4} \\
x_{4}^{\prime }=e^{-3t}\left( t+1\right) x_{1}-\left( 1+e^{-2t}\right) x_{3}-%
\frac{1}{t+1}x_{4}-\frac{1}{t+1}x_{3}^{2}%
\end{array}%
\right. $$
Я определил функцию:
function dzdt=odefun(t,z)
dzdt=zeros(4,1);
dzdt(1)=-(1/(t+1))*z(1)+z(2);
dzdt(2)=-(1+exp(-2*t))*z(1)-(1/(t+1))*z(2)+(exp(-3*t))/(t+1)*z(3);
dzdt(3)=z(4)-(1/(t+1))*z(3);
dzdt(4)=(exp(-3*t))*(t+1)*z(1)-(1+exp(-2*t))*z(3)-(1/(t+1))*z(4)-(1/(t+1))*z(3)^2;
end
Интервал времени [0,100]
иначальные условия: z0 = [0.01 0.01 0.01 0.01]
.
С помощью решателя ode45
я использовал команды:
>> tspan = [0 100];
>> z0 = [0.01 0.01 0.01 0.01];
>> [t,z] = ode45(@(t,z) odefun(t,z), tspan, z0);
>> plot(t,z(:,1),'r')
и легко получил график z(1)=x_1
.
Но я хочу построить функцию f(t)=(t+1)*x_1(t)
, t\in [0,100]
, где x_1=z(1)
- первый неизвестный из системы.Как я мог это сделать?