Я не нашел однозначного ответа на этот вопрос онлайн (извините, если он существует).Я хотел бы понять различия между двумя функциями ( SeparableConv2D и Conv2D ), шаг за шагом, например, с входным набором данных (3,3,3) (как RGB-изображение).
Запуск этого сценария на основе Keras-Tensorflow:
import numpy as np
from keras.layers import Conv2D, SeparableConv2D
from keras.models import Model
from keras.layers import Input
red = np.array([1]*9).reshape((3,3))
green = np.array([100]*9).reshape((3,3))
blue = np.array([10000]*9).reshape((3,3))
img = np.stack([red, green, blue], axis=-1)
img = np.expand_dims(img, axis=0)
inputs = Input((3,3,3))
conv1 = SeparableConv2D(filters=1,
strides=1,
padding='valid',
activation='relu',
kernel_size=2,
depth_multiplier=1,
depthwise_initializer='ones',
pointwise_initializer='ones',
bias_initializer='zeros')(inputs)
conv2 = Conv2D(filters=1,
strides=1,
padding='valid',
activation='relu',
kernel_size=2,
kernel_initializer='ones',
bias_initializer='zeros')(inputs)
model1 = Model(inputs,conv1)
model2 = Model(inputs,conv2)
print("Model 1 prediction: ")
print(model1.predict(img))
print("Model 2 prediction: ")
print(model2.predict(img))
print("Model 1 summary: ")
model1.summary()
print("Model 2 summary: ")
model2.summary()
У меня есть следующий вывод:
Model 1 prediction:
[[[[40404.]
[40404.]]
[[40404.]
[40404.]]]]
Model 2 prediction:
[[[[40404.]
[40404.]]
[[40404.]
[40404.]]]]
Model 1 summary:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 3, 3, 3) 0
_________________________________________________________________
separable_conv2d_1 (Separabl (None, 2, 2, 1) 16
=================================================================
Total params: 16
Trainable params: 16
Non-trainable params: 0
_________________________________________________________________
Model 2 summary:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 3, 3, 3) 0
_________________________________________________________________
conv2d_1 (Conv2D) (None, 2, 2, 1) 13
=================================================================
Total params: 13
Trainable params: 13
Non-trainable params: 0
Я понимаюкак Keras вычисляет прогноз Conv2D для модели 2 благодаря этому посту , но может кто-то объяснить, пожалуйста, SeperableConv2D расчет прогноза модели 1 и его количество параметров (16)