Давайте решим это как проблему граничного значения.У нас есть условия x(0)=0, y(0)=h0, vx(0)=0, vy(0)=0
и y(T)=0
.Чтобы иметь фиксированный интервал интегрирования, установите t=T*s
, что означает, что dx/ds=T*dx/dt=T*vx
и т. Д.
def fall_ode(t,u,p):
vx, vy, rx, ry = u
T = p[0]
# magnitude of velocity calculated
v = np.hypot(vx, vy)
# define new drag constant k
k = cd * rho * v * A / (2 * m)
return np.array([-k * vx, -k * vy - g, vx, vy])*T
def solve_fall(v0, ang, h0):
# convert angle from degrees to radians
ang = ang * np.pi / 180
vx0, vy0 = v0*np.cos(ang), v0*np.sin(ang)
def fall_bc(y0, y1, p): return [ y0[0]-vx0, y0[1]-vy0, y0[2], y0[3]-h0, y1[3] ]
t_init = [0,1]
u_init = [[0,0],[0,0],[0,0], [h0,0]]
p_init = [1]
res = solve_bvp(fall_ode, fall_bc, t_init, u_init, p_init)
print res.message
if res.success:
print "time to ground: ", res.p[0]
# res.sol is a dense output, evaluation interpolates the computed values
return res.sol
sol = solve_fall(300, 30, 20)
s = np.linspace(0,1,501)
u = sol(s)
vx, vy, rx, ry = u
plt.plot(rx, ry)