Шаги для воссоздания вашей df:
df = pd.DataFrame(columns=['Year_Month', 'originating_system_id', 'Total_RFQ_For_Month'])
# only two months
df.loc[0]=['2017-11','BBT',59]
df.loc[1]=['2017-11','EUCR',33]
df.loc[2]=['2017-11','MAXL',6]
df.loc[3]=['2017-11','MXUS',649]
df.loc[4]=['2017-12','BBT',36]
df.loc[5]=['2017-12','EUCR',7]
df.loc[6]=['2017-12','MAXL',88]
# Same as your DF
gp1 = df.groupby(['Year_Month','originating_system_id']).sum()
gp2=gp1.reset_index()
gp3 = df[['Year_Month','Total_RFQ_For_Month']].groupby(['Year_Month']).sum().rename(columns={'Total_RFQ_For_Month':
'RFQ_For_Month_Sum'})
gp2=gp2.merge(gp3, on='Year_Month')
gp2['RFQ_Pcent_For_Month']=((gp2['Total_RFQ_For_Month']*100)/gp2['RFQ_For_Month_Sum']).round(3).astype(str).add('%')
gp2.drop(['RFQ_For_Month_Sum'],1,inplace=True)