Я пытаюсь решить проблему с карполом в спортзале openAI.По Q обучения.Я думаю, что я неправильно понял, как работает Q-learning, поскольку моя модель не улучшается.
Я использую словарь в качестве таблицы Q.Так что я "хэш" (превращаясь в строку) каждого наблюдения.И используя это в качестве ключа в моей таблице.
Каждый ключ (наблюдение) в моей таблице сопоставлен с другим словарем.Где я храню каждое движение, которое было взято в этом состоянии, и соответствующее ему значение Q.
С учетом сказанного, запись в моей таблице может выглядеть так:
'[''0.102'', ''1.021'', ''-0.133'', ''-1.574'']':
0: 0.1
Итак, в состоянии(наблюдение): '[''0.102'', ''1.021'', ''-0.133'', ''-1.574'']'
действие: 0
записано со значением q: 0.01
.
Моя логика здесь неверна?Я действительно не могу понять, если я ошибся с моей реализацией.
import gym
import random
import numpy as np
ENV = 'CartPole-v0'
env = gym.make(ENV)
class Qtable:
def __init__(self):
self.table = {}
def update_table(self, obs, action, value):
obs_hash = self.hash_obs(obs)
# Update table with new observation
if not obs_hash in self.table:
self.table[obs_hash] = {}
self.table[obs_hash][action] = value
else:
# Check if action has been recorded
# If such, check if this value was better
# If not, record new action for this obs
if action in self.table[obs_hash]:
if value > self.table[obs_hash][action]:
self.table[obs_hash][action] = value
else:
self.table[obs_hash][action] = value
def get_prev_value(self, obs, action):
obs_hash = self.hash_obs(obs)
if obs_hash in self.table:
if action in self.table[obs_hash]:
return self.table[obs_hash][action]
return 0
def get_max_value(self, obs):
obs_hash = self.hash_obs(obs)
if obs_hash in self.table:
key = max(self.table[obs_hash])
return self.table[obs_hash][key]
return 0
def has_action(self, obs):
obs_hash = self.hash_obs(obs)
if obs_hash in self.table:
if len(self.table[obs_hash]) > 0:
return True
return False
def get_best_action(self, obs):
obs_hash = self.hash_obs(obs)
if obs_hash in self.table:
return max(self.table[obs_hash])
# Makes a hashable entry of the observation
def hash_obs(self, obs):
return str(['{:.3f}'.format(i) for i in obs])
def play():
q_table = Qtable()
# Hyperparameters
alpha = 0.1
gamma = 0.6
epsilon = 0.1
episodes = 1000
total = 0
for i in range(episodes):
done = False
prev_obs = env.reset()
episode_reward = 0
while not done:
if random.uniform(0, 1) > epsilon and q_table.has_action(prev_obs):
# Exploit learned values
action = q_table.get_best_action(prev_obs)
else:
# Explore action space
action = env.action_space.sample()
# Render the environment
#env.render()
# Take a step
obs, reward, done, info = env.step(action)
if done:
reward = -200
episode_reward += reward
old_value = q_table.get_prev_value(prev_obs, action)
next_max = q_table.get_max_value(obs)
# Get the current sate value
new_value = (1-alpha)*old_value + alpha*(reward + gamma*next_max)
q_table.update_table(obs, action, new_value)
prev_obs = obs
total += episode_reward
print("average", total/episodes)
env.close()
play()