Я пытался выполнить нелинейную регрессию, используя пакет fuctions nls
и nlr
из gnlm
, но моя целевая функция имеет много настраиваемых параметров, и ее проще определить, предварительно определив несколько различных уравнений.,Итак, у меня есть данные в ссылке (https://github.com/Shend92/Nonlinear-regression) и следующие уравнения:
#Import data to data.frame called 'DATA'
#Equations:
ws = function (ap,bp,cp,dp,vel) {
ap*vel+cp*vel^2+dp
}
Fins = function(bs) {
(X1+X5+bs)/(522.64+bs)
}
alp = function(ap,bp,cp,dp,vel,bs) {
Fins(bs)*(ws(ap,bp,cp,dp,vel)-Fins(bs))/ws(ap,bp,cp,dp,vel)^2
}
vel.max = function(ep,fp,bs) {
ep-fp*Fins(bs)
}
del = function(vel,ep,fp,gp,bs) {
vel*(1-(1-vel.max(ep,fp,bs))*exp(-gp*(vel.max(ep,fp,bs)-vel)))
}
Le = function(hp,L,Ld,bs) {
L*(1+hp*Fins(bs)*(1-Fins(bs))*Ld/L)
}
E.s = function(ae,be,ce) {
ae*X1*X2/(100*X1)+be*X1*X3/(100*X1)+ce*(X1*X4)/(100*X1)
}
dens.0 = function(ad,bd,cd){
ad*X1*X2/(100*X1)+bd*X1*X3/(100*X1)+cd*(X1*X4)/(100*X1)
}
Fb = function(lp,Dmill,L) {
lp/(pi*Dmill^2*L)
}
dens.b = 8.05
dens.c = function(bs,ad,bd,cd,ae,be,ce,lp,Dmill,L) {
(Fins(bs)*dens.0(ad,bd,cd)*(1-E.s(ae,be,ce))+Fb(lp,Dmill,L)*
(dens.b-dens.0(ad,bd,cd))*(1-E.s(ae,be,ce)))/Fins(bs)
}
Pmo.s = function(Dmill,vel,Ld,L,ip,jp,kp) {
Dmill^ip*(vel*(jp*Ld+L))^kp
}
##Objective function
Y.s = function(K,Dmill,vel,Ld,L,ip,jp,kp,bs,ad,bd,cd,ae,be,ce,lp,ap,bp,
cp,dp,ep,fp,gp,hp) {
Pmo.s(Dmill,vel,Ld,L,ip,jp,kp)+K*Dmill^2.5*Le(hp,L,Ld,bs)*
dens.c(bs,ad,bd,cd,ae,be,ce,lp,Dmill,L)*alp(ap,bp,cp,dp,vel,bs)*
del(vel,ep,fp,gp,bs)
}
Как только все мои уравнения определены (Обратите внимание, что целевая функция Y.s
имеет всевключены другие функции, и я проверил, что это окончательное уравнение работает правильно с некоторыми параметрами теста) Я попытался запустить следующий код, чтобы соответствовать всем настраиваемым параметрам (K,Dmill,vel,Ld,L,ip,jp,kp,bs,ad,bd,cd,ae,be,ce,lp,ap,bp,cp,dp,ep,fp,gp,hp)
nlr.test1 <- nls(Y ~ Y.s(K,Dmill,vel,Ld,L,ip,jp,kp,bs,ad,bd,cd,ae,be,ce,lp,
ap,bp,cp,dp,ep,fp,gp,hp),
start=list(Dmill = 3.526,ap = 2.000,bp = 2.900,cp = -2.200,
dp = -0.500,ep = 0.900,fp = -0.135,gp = -19.420,
hp = 12.280,ip = 2.500,jp = 0.600,kp = 0.8,K = 2.000,
vel = 0.700,bs = 0.187,L = 15.000,Ld = 3.000,ae = 0.307,
be = 0.174,ce = 0.279,ad = 3.200,bd = 2.700,
cd = 2.749,lp=430),
algorithm = "port", ,lower=list(ap = 0,bp = 0,cp = -5,dp = -2,ep = 0,
fp = -5,gp = -100,hp = 0,ip = 0,jp = 0,kp = 0,K = 0,
Dmill = 1,vel = 0,bs = 0,L = 8,Ld = 0,ae = 0,be = 0,
ce = 0,ad = 0,bd = 0,cd = 0,lp=0), upper=list(ap = 5,
bp = 5,cp = -1,dp = 0,ep = 2,fp = 0,gp = 0,hp = 20,ip = 5,
jp = 1,kp = 2,K = 5,Dmill = 5,vel = 2,bs = 5,L = 20,
Ld = 8,ae = 1,be = 1,ce = 1,ad = 5,bd = 4,cd = 4,lp=1000),
data=DATA)
Запуск этого кода выдает следующее сообщение об ошибке
Error in nlsModel(formula, mf, start, wts, upper) :
singular gradient matrix at initial parameter estimates
Насколько я понимаю, эта ошибка говорит о том, что начальные значения не являются хорошими, но я думаю, что это не так, потому что начальные значения кажутсядавать значения Ys, близкие к реальным значениям Y. Поэтому я попробовал другую функцию:
nlr(Y,mu=Y.s(K,Dmill,vel,Ld,L,ip,jp,kp,bs,ad,bd,cd,ae,be,ce,lp,
ap,bp,cp,dp,ep,fp,gp,hp),
pmu=list(Dmill = 3.526,ap = 2.000,bp = 2.900,cp = -2.200,
dp = -0.500,ep = 0.900,fp = -0.135,gp = -19.420,
hp = 12.280,ip = 2.500,jp = 0.600,kp = 0.8,K = 2.000,
vel = 0.700,bs = 0.187,L = 15.000,Ld = 3.000,ae = 0.307,
be = 0.174,ce = 0.279,ad = 3.200,bd = 2.700,
cd = 2.749,lp=430))
Запуск этого кода дает следующее сообщение об ошибке:
Error in Pmo.s(Dmill, vel, Ld, L, ip, jp, kp) : object 'Dmill' not found
Теперь я не уверен, что происходит, потому что, как я уже говорил, я проверил правильность определения функции, задав тестовые значения для всех параметров.
Я знаюЭта проблема немного сложна для понимания, поскольку в ней так много параметров и уравнений, но я был бы очень признателен, если бы кто-нибудь хотя бы мог помочь мне, объяснив, почему nlr
дает мне ошибку, когда я не нахожу определенные объекты восновная функция.Или, если есть лучшая функция для решения задач нелинейной регрессии.
Заранее большое спасибо!
София