Мы бы в основном использовали две философии - Catching shifts on compared array
и Offsetting each column results so that we could vectorize it
.
Итак, с таким намерением, вот один из способов достичь желаемогорезультаты -
def maxisland_start_len_mask(a, fillna_index = -1, fillna_len = 0):
# a is a boolean array
pad = np.zeros(a.shape[1],dtype=bool)
mask = np.vstack((pad, a, pad))
mask_step = mask[1:] != mask[:-1]
idx = np.flatnonzero(mask_step.T)
island_starts = idx[::2]
island_lens = idx[1::2] - idx[::2]
n_islands_percol = mask_step.sum(0)//2
bins = np.repeat(np.arange(a.shape[1]),n_islands_percol)
scale = island_lens.max()+1
scaled_idx = np.argsort(scale*bins + island_lens)
grp_shift_idx = np.r_[0,n_islands_percol.cumsum()]
max_island_starts = island_starts[scaled_idx[grp_shift_idx[1:]-1]]
max_island_percol_start = max_island_starts%(a.shape[0]+1)
valid = n_islands_percol!=0
cut_idx = grp_shift_idx[:-1][valid]
max_island_percol_len = np.maximum.reduceat(island_lens, cut_idx)
out_len = np.full(a.shape[1], fillna_len, dtype=int)
out_len[valid] = max_island_percol_len
out_index = np.where(valid,max_island_percol_start,fillna_index)
return out_index, out_len
Пробный прогон -
# Generic case to handle all 0s columns
In [112]: a
Out[112]:
array([[False, False, False],
[False, False, False],
[ True, False, False],
[ True, False, True],
[False, False, False],
[ True, False, True],
[ True, False, False],
[ True, False, True],
[False, False, True],
[ True, False, False]])
In [117]: starts,lens = maxisland_start_len_mask(a, fillna_index=-1, fillna_len=0)
In [118]: starts
Out[118]: array([ 5, -1, 7])
In [119]: lens
Out[119]: array([3, 0, 2])