Вот одно векторизованное решение:
import numpy as np
def findSaddlePoints6neibours_vec(gray):
gray = np.asarray(gray, dtype=int)
center = gray[1:-1, 1:-1]
diffs = [
gray[:-2, 1:-1],
gray[:-2, 2:],
gray[1:-1, 2:],
gray[2:, 1:-1],
gray[2:, :-2],
gray[1:-1, :-2],
]
diffs.append(diffs[0])
diffs = np.stack(diffs)
diffs -= center
sign_changes = np.count_nonzero(diffs[:-1] * diffs[1:] < 0, axis=0)
is_saddle = sign_changes > 3
number = np.count_nonzero(is_saddle)
result = np.pad(is_saddle, ((1, 1), (1, 1)), mode='constant').astype(int)
return result, number
Быстрый тест:
import numpy as np
# Make example input
np.random.seed(100)
gray = np.random.randint(-10, 10, size=(80, 100))
# The original function
result1, number1 = findSaddlePoints6neibours(gray)
# The vectorized function
result2, number2 = findSaddlePoints6neibours_vec(gray)
# Check results match
print(number1 == number2)
# True
print(np.all(result1 == result2))
# True
# Compare run times
%timeit findSaddlePoints6neibours(gray)
# 31.1 ms ± 682 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit findSaddlePoints6neibours_vec(gray)
# 247 µs ± 1.16 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
РЕДАКТИРОВАТЬ:
Недостаток функции выше заключается в том, что она требует большеобъем памяти.Если вы можете использовать Numba, вы можете скомпилировать функцию и сделать ее еще быстрее, если вы используете распараллеливание:
import numba as nb
@nb.njit(parallel=True)
def findSaddlePoints6neibours_nb(gray):
gray = gray.astype(np.int32)
h = gray.shape[0]
w = gray.shape[1]
number = 0
result = np.zeros((h, w), dtype=np.int32)
neiboursDiff = np.empty(7, dtype=np.int32)
for y in nb.prange(1, h - 1):
for x in np.prange(1, w - 1):
neiboursDiff[0] = gray[y-1][x]
neiboursDiff[1] = gray[y-1][x+1]
neiboursDiff[2] = gray[y][x+1]
neiboursDiff[3] = gray[y+1][x]
neiboursDiff[4] = gray[y+1][x-1]
neiboursDiff[5] = gray[y][x-1]
neiboursDiff[6] = neiboursDiff[0]
neiboursDiff -= gray[y, x]
changes = np.sum(neiboursDiff[:-1] * neiboursDiff[1:] < 0)
is_saddle = int(changes > 3)
number += is_saddle
result[y, x] = is_saddle
return result, number
Продолжая небольшой тест выше:
%timeit findSaddlePoints6neibours_nb(gray)
# 114 µs ± 496 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)