Я использовал MinHashLSH с приблизительным значением сходства со Scala и Spark 2.4, чтобы найти границы между сетью.Предсказание ссылок на основе сходства документов.Моя проблема в том, что, хотя я увеличиваю хэш-таблицы в MinHashLSH, моя точность и оценка F1 снижаются.Все, что я уже прочитал для этого алгоритма, показывает мне, что у меня есть проблема.
Я пробовал различное количество хеш-таблиц, и я предоставил различное количество порогов сходства Жакара, но у меня точно такая же проблема, точность быстро снижается.Я также пробовал разные выборки моего набора данных, и ничего не изменилось.Мой рабочий процесс продолжается следующим образом: я объединяю все текстовые столбцы моего информационного кадра, который включает заголовок, авторов, журнал и реферат, а затем я размечаю объединенный столбец на слова.Затем я использую CountVectorizer для преобразования этого «пакета слов» в векторы.Затем я предоставляю этот столбец в MinHashLSH с некоторыми хеш-таблицами и, наконец, я делаю примерное сходство, чтобы найти похожие «документы», которые находятся под моим заданным порогом.Моя реализация следующая.
import org.apache.spark.ml.feature._
import org.apache.spark.ml.linalg._
import UnsupervisedLinkPrediction.BroutForce.join
import org.apache.log4j.{Level, Logger}
import org.apache.spark.ml.Pipeline
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.{col, udf, when}
import org.apache.spark.sql.types._
object lsh {
def main(args: Array[String]): Unit = {
Logger.getLogger("org").setLevel(Level.ERROR) // show only errors
// val cores=args(0).toInt
// val partitions=args(1).toInt
// val hashTables=args(2).toInt
// val limit = args(3).toInt
// val threshold = args(4).toDouble
val cores="*"
val partitions=1
val hashTables=16
val limit = 1000
val jaccardDistance = 0.89
val master = "local["+cores+"]"
val ss = SparkSession.builder().master(master).appName("MinHashLSH").getOrCreate()
val sc = ss.sparkContext
val inputFile = "resources/data/node_information.csv"
println("reading from input file: " + inputFile)
println
val schemaStruct = StructType(
StructField("id", IntegerType) ::
StructField("pubYear", StringType) ::
StructField("title", StringType) ::
StructField("authors", StringType) ::
StructField("journal", StringType) ::
StructField("abstract", StringType) :: Nil
)
// Read the contents of the csv file in a dataframe. The csv file contains a header.
// var papers = ss.read.option("header", "false").schema(schemaStruct).csv(inputFile).limit(limit).cache()
var papers = ss.read.option("header", "false").schema(schemaStruct).csv(inputFile).limit(limit).cache()
papers.repartition(partitions)
println("papers.rdd.getNumPartitions"+papers.rdd.getNumPartitions)
import ss.implicits._
// Read the original graph edges, ground trouth
val originalGraphDF = sc.textFile("resources/data/Cit-HepTh.txt").map(line => {
val fields = line.split("\t")
(fields(0), fields(1))
}).toDF("nodeA_id", "nodeB_id").cache()
val originalGraphCount = originalGraphDF.count()
println("Ground truth count: " + originalGraphCount )
val nullAuthor = ""
val nullJournal = ""
val nullAbstract = ""
papers = papers.na.fill(nullAuthor, Seq("authors"))
papers = papers.na.fill(nullJournal, Seq("journal"))
papers = papers.na.fill(nullAbstract, Seq("abstract"))
papers = papers.withColumn("nonNullAbstract", when(col("abstract") === nullAbstract, col("title")).otherwise(col("abstract")))
papers = papers.drop("abstract").withColumnRenamed("nonNullAbstract", "abstract")
papers.show(false)
val filteredGt= originalGraphDF.as("g").join(papers.as("p"),(
$"g.nodeA_id" ===$"p.id") || ($"g.nodeB_id" ===$"p.id")
).select("g.nodeA_id","g.nodeB_id").distinct().cache()
filteredGt.show()
val filteredGtCount = filteredGt.count()
println("Filtered GroundTruth count: "+ filteredGtCount)
//TOKENIZE
val tokPubYear = new Tokenizer().setInputCol("pubYear").setOutputCol("pubYear_words")
val tokTitle = new Tokenizer().setInputCol("title").setOutputCol("title_words")
val tokAuthors = new RegexTokenizer().setInputCol("authors").setOutputCol("authors_words").setPattern(",")
val tokJournal = new Tokenizer().setInputCol("journal").setOutputCol("journal_words")
val tokAbstract = new Tokenizer().setInputCol("abstract").setOutputCol("abstract_words")
println("Setting pipeline stages...")
val stages = Array(
tokPubYear, tokTitle, tokAuthors, tokJournal, tokAbstract
// rTitle, rAuthors, rJournal, rAbstract
)
val pipeline = new Pipeline()
pipeline.setStages(stages)
println("Transforming dataframe\n")
val model = pipeline.fit(papers)
papers = model.transform(papers)
println(papers.count())
papers.show(false)
papers.printSchema()
val udf_join_cols = udf(join(_: Seq[String], _: Seq[String], _: Seq[String], _: Seq[String], _: Seq[String]))
val joinedDf = papers.withColumn(
"paper_data",
udf_join_cols(
papers("pubYear_words"),
papers("title_words"),
papers("authors_words"),
papers("journal_words"),
papers("abstract_words")
)
).select("id", "paper_data").cache()
joinedDf.show(5,false)
val vocabSize = 1000000
val cvModel: CountVectorizerModel = new CountVectorizer().setInputCol("paper_data").setOutputCol("features").setVocabSize(vocabSize).setMinDF(10).fit(joinedDf)
val isNoneZeroVector = udf({v: Vector => v.numNonzeros > 0}, DataTypes.BooleanType)
val vectorizedDf = cvModel.transform(joinedDf).filter(isNoneZeroVector(col("features"))).select(col("id"), col("features"))
vectorizedDf.show()
val mh = new MinHashLSH().setNumHashTables(hashTables)
.setInputCol("features").setOutputCol("hashValues")
val mhModel = mh.fit(vectorizedDf)
mhModel.transform(vectorizedDf).show()
vectorizedDf.createOrReplaceTempView("vecDf")
println("MinHashLSH.getHashTables: "+mh.getNumHashTables)
val dfA = ss.sqlContext.sql("select id as nodeA_id, features from vecDf").cache()
dfA.show(false)
val dfB = ss.sqlContext.sql("select id as nodeB_id, features from vecDf").cache()
dfB.show(false)
val predictionsDF = mhModel.approxSimilarityJoin(dfA, dfB, jaccardDistance, "JaccardDistance").cache()
println("Predictions:")
val predictionsCount = predictionsDF.count()
predictionsDF.show()
println("Predictions count: "+predictionsCount)
predictionsDF.createOrReplaceTempView("predictions")
val pairs = ss.sqlContext.sql("select datasetA.nodeA_id, datasetB.nodeB_id, JaccardDistance from predictions").cache()
pairs.show(false)
val totalPredictions = pairs.count()
println("Properties:\n")
println("Threshold: "+threshold+"\n")
println("Hahs tables: "+hashTables+"\n")
println("Ground truth: "+filteredGtCount)
println("Total edges found: "+totalPredictions +" \n")
println("EVALUATION PROCESS STARTS\n")
println("Calculating true positives...\n")
val truePositives = filteredGt.as("g").join(pairs.as("p"),
($"g.nodeA_id" === $"p.nodeA_id" && $"g.nodeB_id" === $"p.nodeB_id") || ($"g.nodeA_id" === $"p.nodeB_id" && $"g.nodeB_id" === $"p.nodeA_id")
).cache().count()
println("True Positives: "+truePositives+"\n")
println("Calculating false positives...\n")
val falsePositives = predictionsCount - truePositives
println("False Positives: "+falsePositives+"\n")
println("Calculating true negatives...\n")
val pairsPerTwoCount = (limit *(limit - 1)) / 2
val trueNegatives = (pairsPerTwoCount - truePositives) - falsePositives
println("True Negatives: "+trueNegatives+"\n")
val falseNegatives = filteredGtCount - truePositives
println("False Negatives: "+falseNegatives)
val truePN = (truePositives+trueNegatives).toFloat
println("TP + TN sum: "+truePN+"\n")
val sum = (truePN + falseNegatives+ falsePositives).toFloat
println("TP +TN +FP+ FN sum: "+sum+"\n")
val accuracy = (truePN/sum).toFloat
println("Accuracy: "+accuracy+"\n")
val precision = truePositives.toFloat / (truePositives+falsePositives).toFloat
val recall = truePositives.toFloat/(truePositives+falseNegatives).toFloat
val f1Score = 2*(recall*precision)/(recall+precision).toFloat
println("F1 score: "+f1Score+"\n")
ss.stop()
Я забыл вам сказать, что я выполняю этот код в кластере с 40 ядрами и 64 г оперативной памяти.Обратите внимание, что примерное объединение сходства (реализация Spark) работает с JACCARD DISTANCE, а не с JACCARD INDEX.Поэтому в качестве порога сходства я указываю РАССТОЯНИЕ JACCARD, которое в моем случае равно jaccardDistance = 1 - порог.(Порог = Индекс Жакара).
Я ожидал получить более высокую точность и оценку f1, пока увеличиваю хеш-таблицы.У вас есть идеи по поводу моей проблемы?
Спасибо всем заранее!