Мой следующий код выводит то, что представляется списком словарей для каждого участка переписи, который в основном похож на обозначенный участок земли.Я был в состоянии вычислить население и процент нескольких различных типов земного покрова.Теперь я хочу вычислить коэффициент корреляции Пирсона между населением и процентом каждого типа растительного покрова.
Я пытаюсь извлечь / отфильтровать список словарей, чтобы я мог сравнить население с каждым икаждый тип растительного покрова.Отсюда корреляции Пирсона:
- населения и развитых земель
- населения и бесплодных земель
- населения и лесных угодий
- ...
Вот код:
import geopandas as gpd
from rasterstats import zonal_stats
from rasterio.mask import mask
from rasterio.plot import show
import matplotlib.pyplot as plt
import numpy as np
import fiona
import rasterio
from scipy import stats
from rasterio.warp import calculate_default_transform, reproject, Resampling
mass_fp = r"New_Massachusetts.tif"
mass_tracts = gpd.read_file("Massachusetts/Massachusetts.shp");
dst_crs = 'EPSG:4269';
with rasterio.open('Massachusetts.tif') as src:
transform, width, height = calculate_default_transform(
src.crs, mass_tracts.crs, src.width, src.height, *src.bounds)
kwargs = src.meta.copy()
kwargs.update({
'crs': mass_tracts.crs,
'transform': transform,
'width': width,
'height': height
})
with rasterio.open('New_Mass.tif', 'w', **kwargs) as dst:
for i in range(1, src.count + 1):
reproject(
source=rasterio.band(src, i),
destination=rasterio.band(dst, i),
src_transform=src.transform,
src_crs=src.crs,
dst_transform=transform,
dst_crs=dst_crs,
resampling=Resampling.nearest)
#Getting zonal stats
stats = zonal_stats("Massachusetts/Massachusetts.shp", "New_Mass.tif",stats="count",geojson_out=True, copy_properties=True,nodata_value=0,categorical=True);
#Variables for our loop below
total_pop=0.0;
total_pixel_count=0.0;
total_developed = 0.0;
total_water_ice = 0.0;
total_barren_land = 0.0;
total_forest = 0.0;
#Array to store our census track
census_tract_land_percentages = [];
#Looping through each tract in the stats data and getting the data we need and then storing it in a array with dictionaries
#[11,12], [21, 22, 23,24], 31, [41,42,43] 5
for x in stats:
total_pixel_count=x["properties"]["count"];
total_census_population = x["properties"]["DP0010001"]
total_developed= (float(x["properties"].get(21,0)+x.get(22,0)+x["properties"].get(23,0) + x["properties"].get(24,0))/total_pixel_count)*100;
total_water_ice = (float(x["properties"].get(11,0)+x["properties"].get(12,0))/total_pixel_count)*100;
total_barren_land=float(x["properties"].get(31,0)/total_pixel_count)*100;
total_forest = (float(x["properties"].get(41,0)+x["properties"].get(42,0)+x["properties"].get(43,0))/total_pixel_count)*100;
census_tract_land_percentages.append({"Total Population:":total_census_population,"Total Water Ice Cover":total_water_ice,"Total Developed":total_developed,
"Total Barren Land":total_barren_land,"Total Forest":total_forest});
print(census_tract_land_percentages);
#Getting the total population for all census tracts
for x in mass_tracts["DP0010001"]:
total_pop+=x
np_census_arr = np.asarray(census_tract_land_percentages);
После запуска этого кода я получаю следующий список словарей, который мне интересно, как я могу извлечь / отфильтровать население и сравнить его с каждыми каждый процент земного покрова и, в конечном итоге, рассчитать корреляцию Пирсона r.
[{'Total Population:': 4585, 'Total Water Ice Cover': 2.848142234497044, 'Total Developed': 17.205368316575324, 'Total Barren Land': 0.22439908514219134, 'Total Forest': 34.40642126612868},
{'Total Population:': 4751, 'Total Water Ice Cover': 1.047783534830167, 'Total Developed': 37.27115716753022, 'Total Barren Land': 0.11514104778353484, 'Total Forest': 19.11341393206678},
{'Total Population:': 3214, 'Total Water Ice Cover': 0.09166603009701321, 'Total Developed': 23.50469788404247, 'Total Barren Land': 0.2597204186082041, 'Total Forest': 20.418608204109695},
{'Total Population:': 5005, 'Total Water Ice Cover': 0.0, 'Total Developed': 66.37545713124746, 'Total Barren Land': 0.0, 'Total Forest': 10.68671271840715},
...
]
Есть идеи, как я могу пройти через это и затем вычислить r Пирсона для общей переменной популяции по отношению к проценту каждого типа земного покрова?
Спасибо