Я делаю пробное упражнение мл pyspark, где мне нужно сохранить модель и прочитать ее обратно.Я могу успешно сохранить модель, но когда я пытаюсь прочитать / загрузить ее обратно, она выдает ниже исключения.Я новичок в Spark ML и Python, пожалуйста, помогите мне в этом.
Код:
from pyspark.sql import *
from pyspark.ml.feature import RFormula
from pyspark.ml.classification import LogisticRegression
from pyspark.ml import Pipeline
from pyspark.ml.tuning import ParamGridBuilder
from pyspark.ml.evaluation import BinaryClassificationEvaluator
from pyspark.ml.tuning import TrainValidationSplit
from pyspark.ml.tuning import TrainValidationSplitModel
spark = SparkSession.builder.appName("LocalMLSparkSession").master("local").getOrCreate()
df = spark.read.json("/to_data/simpleml.json").orderBy("value2")
df.select(df.color).distinct().show(10, False)
train, test = df.randomSplit([0.7, 0.3])
rForm = RFormula()
ls = LogisticRegression().setLabelCol("label").setFeaturesCol("features")
# setting pipeline
stages = [rForm,ls]
pipeline = Pipeline().setStages(stages)
#setting param grid builder
params = ParamGridBuilder()\
.addGrid(rForm.formula,["lab ~ . + color:value1", "lab ~ . + color:value1 + color:value2"])\
.addGrid(ls.elasticNetParam, [0.0, 0.5, 1.0])\
.addGrid(ls.regParam,[0.1, 0.2])\
.build()
#setting evaluator
evaluator = BinaryClassificationEvaluator()\
.setMetricName("areaUnderROC")\
.setRawPredictionCol("prediction")\
.setLabelCol("label")
#checking hyperparameters to train datasets
tvs = TrainValidationSplit()\
.setTrainRatio(0.75)\
.setEstimatorParamMaps(params)\
.setEstimator(pipeline)\
.setEvaluator(evaluator)
tvsFitted = tvs.fit(train)
evl = evaluator.evaluate(tvsFitted.transform(test))
tvsFitted.transform(test).select("features", "label", "prediction").show(10,False)
print(evl)
pip_model = tvsFitted.bestModel
pip_model.write().overwrite().save("/to_path/sparkml/model")
model = TrainValidationSplitModel().load("/to_path/sparkml/model")
model.transform(test)
Исключение:
Traceback (most recent call last):
File "/home/dd/dd/python-workspace/SparkMLPipelineDemo.py", line 59, in <module>
model = TrainValidationSplitModel().load("/to_path/sparkml/model")
TypeError: __init__() missing 1 required positional argument: 'bestModel'
Process finished with exit code 1