Я думаю, вы можете создать DatetimeIndex
в read_csv
по параметрам parse_dates
и index_col
:
df = pd.read_csv(FilePath, parse_dates=['TIMESTAMP'], index_col=['TIMESTAMP'])
df = df.drop(['RECORD'],axis=1)
Но я думаю, что есть некоторые нечисловые значения,так необходимо to_numeric
с errors='coerce'
для анализа их на NaN
s:
df = df.apply(lambda x: pd.to_numeric(x, errors='coerce'))
Пример с вашими данными выборки - но добавлены строки для столбцов object
:
import pandas as pd
pd.options.display.max_columns = 20
temp=u""""TIMESTAMP","RECORD","WM1_u_ms","WM1_v_ms","WM1_w_ms","WM2_u_ms","WM2_v_ms","WM2_w_ms","WS1_u_ms","WS1_v_ms"
"2018-04-06;14:31:11.5",29699805,2.628a,4.629a,0.599s,3.908,7.971,0.47,2;;51,7.18
"2018-04-06;14:31:11.75",29699806,3.264,4.755,-0.095,2.961,6.094,-0.504,2.47,7.18
"2018-04-06;14:31:12",29699807,1.542,5.793,0.698,4.95,4.91,0.845,2.18,7.5
"2018-04-06;14:31:12.25",29699808,2.527,5.207,0.012,4.843,6.285,0.924,2.15,7.4
"2018-04-06;14:31:12.5",29699809,3.511,4.528,1.059,2.986,5.636,0.949,3.29,5.54
"2018-04-06;14:31:12.75",29699810,3.445,3.957,-0.075,3.127,6.561,0.259,3.85,5.45
"2018-04-06;14:31:13",29699811,2.624,5.238,-0.166,3.451,7.199,0.242,3.94,a"""
#after testing replace 'pd.compat.StringIO(temp)' to 'filename.csv'
df = pd.read_csv(pd.compat.StringIO(temp), parse_dates=['TIMESTAMP'], index_col=['TIMESTAMP'])
print (df)
RECORD WM1_u_ms WM1_v_ms WM1_w_ms WM2_u_ms \
TIMESTAMP
2018-04-06 14:31:11.500 29699805 2.628a 4.629a 0.599s 3.908
2018-04-06 14:31:11.750 29699806 3.264 4.755 -0.095 2.961
2018-04-06 14:31:12.000 29699807 1.542 5.793 0.698 4.950
2018-04-06 14:31:12.250 29699808 2.527 5.207 0.012 4.843
2018-04-06 14:31:12.500 29699809 3.511 4.528 1.059 2.986
2018-04-06 14:31:12.750 29699810 3.445 3.957 -0.075 3.127
2018-04-06 14:31:13.000 29699811 2.624 5.238 -0.166 3.451
WM2_v_ms WM2_w_ms WS1_u_ms WS1_v_ms
TIMESTAMP
2018-04-06 14:31:11.500 7.971 0.470 2;;51 7.18
2018-04-06 14:31:11.750 6.094 -0.504 2.47 7.18
2018-04-06 14:31:12.000 4.910 0.845 2.18 7.5
2018-04-06 14:31:12.250 6.285 0.924 2.15 7.4
2018-04-06 14:31:12.500 5.636 0.949 3.29 5.54
2018-04-06 14:31:12.750 6.561 0.259 3.85 5.45
2018-04-06 14:31:13.000 7.199 0.242 3.94 a
print (df.dtypes)
RECORD int64
WM1_u_ms object
WM1_v_ms object
WM1_w_ms object
WM2_u_ms float64
WM2_v_ms float64
WM2_w_ms float64
WS1_u_ms object
WS1_v_ms object
dtype: object
print (df.index)
DatetimeIndex(['2018-04-06 14:31:11.500000', '2018-04-06 14:31:11.750000',
'2018-04-06 14:31:12', '2018-04-06 14:31:12.250000',
'2018-04-06 14:31:12.500000', '2018-04-06 14:31:12.750000',
'2018-04-06 14:31:13'],
dtype='datetime64[ns]', name='TIMESTAMP', freq=None)
df = df.drop(['RECORD'],axis=1)
df = df.apply(lambda x: pd.to_numeric(x, errors='coerce'))
print (df)
WM1_u_ms WM1_v_ms WM1_w_ms WM2_u_ms WM2_v_ms \
TIMESTAMP
2018-04-06 14:31:11.500 NaN NaN NaN 3.908 7.971
2018-04-06 14:31:11.750 3.264 4.755 -0.095 2.961 6.094
2018-04-06 14:31:12.000 1.542 5.793 0.698 4.950 4.910
2018-04-06 14:31:12.250 2.527 5.207 0.012 4.843 6.285
2018-04-06 14:31:12.500 3.511 4.528 1.059 2.986 5.636
2018-04-06 14:31:12.750 3.445 3.957 -0.075 3.127 6.561
2018-04-06 14:31:13.000 2.624 5.238 -0.166 3.451 7.199
WM2_w_ms WS1_u_ms WS1_v_ms
TIMESTAMP
2018-04-06 14:31:11.500 0.470 NaN 7.18
2018-04-06 14:31:11.750 -0.504 2.47 7.18
2018-04-06 14:31:12.000 0.845 2.18 7.50
2018-04-06 14:31:12.250 0.924 2.15 7.40
2018-04-06 14:31:12.500 0.949 3.29 5.54
2018-04-06 14:31:12.750 0.259 3.85 5.45
2018-04-06 14:31:13.000 0.242 3.94 NaN
print (df.dtypes)
WM1_u_ms float64
WM1_v_ms float64
WM1_w_ms float64
WM2_u_ms float64
WM2_v_ms float64
WM2_w_ms float64
WS1_u_ms float64
WS1_v_ms float64
dtype: object