Я пытался вручную вычислить tfidf
значения, используя формулу, но полученный результат отличается от результата, полученного при использовании реализации scikit-learn .
from sklearn.feature_extraction.text import TfidfVectorizer
tv = TfidfVectorizer()
a = "cat hat bat splat cat bat hat mat cat"
b = "cat mat cat sat"
tv.fit_transform([a, b]).toarray()
# array([[0.53333448, 0.56920781, 0.53333448, 0.18973594, 0. ,
# 0.26666724],
# [0. , 0.75726441, 0. , 0.37863221, 0.53215436,
# 0. ]])
tv.get_feature_names()
# ['bat', 'cat', 'hat', 'mat', 'sat', 'splat']
Iпопытался вручную вычислить tfidf
для документа, но результат отличается от TfidfVectorizer.fit_transform
.
(np.log(2+1/1+1) + 1) * (2/9) = 0.5302876358044202
(np.log(2+1/2+1) + 1) * (3/9) = 0.750920989498456
(np.log(2+1/1+1) + 1) * (2/9) = 0.5302876358044202
(np.log(2+1/2+1) + 1) * (1/9) = 0.25030699649948535
(np.log(2+1/1+1) + 1) * (0/9) = 0.0
(np.log(2+1/1+1) + 1) * (1/9) = 0.2651438179022101
То, что я должен был получить, это
[0.53333448, 0.56920781, 0.53333448, 0.18973594, 0, 0.26666724]