Стандартные операции в C ++ выполняются очень быстро (+
, -
и т. Д.).Тем не менее, exp
сложнее для вычисления, поэтому медленнее.
Итак, если мы хотим улучшить производительность, более вероятно, что мы сможем предварительно вычислить вычисления exp
.
Здесь B(i) = \sum_{j < i}(x_i-x_j)exp^{-\beta(x_i - x_j)}
эквивалентно B(i) = \sum_{j < i}(x_i-x_j) / exp^{\beta x_i} * exp^{\beta x_j}
, так чтоВы можете предварительно вычислить exp
только для каждого индекса (а также вывести его в зависимости от i
из цикла).Реорганизовав его, вы можете делать другие предварительные вычисления.Итак, я поместил здесь два предыдущих решения, а затем мои инкрементные решения:
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
Rcpp::NumericVector hawk_process_org(Rcpp::NumericVector x, double beta = 3) {
int n = x.size();
Rcpp::NumericVector B = Rcpp::no_init( n - 1);
for (int i = 1; i < n; i++) {
double temp = 0;
for (int j = 0; j <= i - 1; j++) {
temp += (x[i] - x[j]) * exp(-beta * (x[i] - x[j]));
}
B(i - 1) = temp;
}
return B;
}
// [[Rcpp::export]]
Rcpp::NumericVector hawk_process_cache(Rcpp::NumericVector x, double beta = 3) {
int n = x.size();
Rcpp::NumericVector B = Rcpp::no_init( n - 1);
double x_i;
for (int i = 1; i < n; ++i) {
double temp = 0;
x_i = x[i];
for (int j = 0; j <= i - 1; ++j) {
temp += (x_i - x[j]) * 1 / exp(beta * (x_i - x[j]));
}
B(i - 1) = temp;
}
return B;
}
// [[Rcpp::export]]
Rcpp::NumericVector hawk_process_cache_2(Rcpp::NumericVector x,
double beta = 3) {
int i, j, n = x.size();
Rcpp::NumericVector B(n);
Rcpp::NumericVector x_exp = exp(beta * x);
double temp;
for (i = 1; i < n; i++) {
temp = 0;
for (j = 0; j < i; j++) {
temp += (x[i] - x[j]) * x_exp[j] / x_exp[i];
}
B[i] = temp;
}
return B;
}
// [[Rcpp::export]]
Rcpp::NumericVector hawk_process_cache_3(Rcpp::NumericVector x,
double beta = 3) {
int i, j, n = x.size();
Rcpp::NumericVector B(n);
Rcpp::NumericVector x_exp = exp(beta * x);
double temp;
for (i = 1; i < n; i++) {
temp = 0;
for (j = 0; j < i; j++) {
temp += (x[i] - x[j]) * x_exp[j];
}
B[i] = temp / x_exp[i];
}
return B;
}
// [[Rcpp::export]]
Rcpp::NumericVector hawk_process_cache_4(Rcpp::NumericVector x,
double beta = 3) {
Rcpp::NumericVector exp_pre = exp(beta * x);
Rcpp::NumericVector exp_pre_cumsum = cumsum(exp_pre);
Rcpp::NumericVector x_exp_pre_cumsum = cumsum(x * exp_pre);
return (x * exp_pre_cumsum - x_exp_pre_cumsum) / exp_pre;
}
// [[Rcpp::export]]
Rcpp::NumericVector hawk_process_cache_5(Rcpp::NumericVector x,
double beta = 3) {
int n = x.size();
NumericVector B(n);
double exp_pre, exp_pre_cumsum = 0, x_exp_pre_cumsum = 0;
for (int i = 0; i < n; i++) {
exp_pre = exp(beta * x[i]);
exp_pre_cumsum += exp_pre;
x_exp_pre_cumsum += x[i] * exp_pre;
B[i] = (x[i] * exp_pre_cumsum - x_exp_pre_cumsum) / exp_pre;
}
return B;
}
/*** R
set.seed(111)
x = rnorm(1e3)
all.equal(
hawk_process_org(x),
hawk_process_cache(x)
)
all.equal(
hawk_process_org(x),
hawk_process_cache_2(x)[-1]
)
all.equal(
hawk_process_org(x),
hawk_process_cache_3(x)[-1]
)
all.equal(
hawk_process_org(x),
hawk_process_cache_4(x)[-1]
)
all.equal(
hawk_process_org(x),
hawk_process_cache_5(x)[-1]
)
microbenchmark::microbenchmark(
hawk_process_org(x),
hawk_process_cache(x),
hawk_process_cache_2(x),
hawk_process_cache_3(x),
hawk_process_cache_4(x),
hawk_process_cache_5(x)
)
*/
Эталон для x = rnorm(1e3)
:
Unit: microseconds
expr min lq mean median uq max neval cld
hawk_process_org(x) 19801.686 20610.0365 21017.89339 20816.1385 21157.4900 25548.042 100 d
hawk_process_cache(x) 20506.903 21062.1370 21534.47944 21297.8710 21775.2995 26030.106 100 e
hawk_process_cache_2(x) 1895.809 2038.0105 2087.20696 2065.8220 2103.0695 3212.874 100 c
hawk_process_cache_3(x) 430.084 458.3915 494.09627 474.2840 503.0885 1580.282 100 b
hawk_process_cache_4(x) 50.657 55.2930 71.60536 57.6105 63.5700 1190.260 100 a
hawk_process_cache_5(x) 43.373 47.0155 60.43775 49.6640 55.6235 842.288 100 a
Это гораздо эффективнее, чем пытаться получитьнаносекунды от небольших оптимизаций, которые могут сделать ваш код более трудным для чтения.
Но все же, давайте попробуем оптимизации, предложенные @coatless для моего самого последнего решения:
// [[Rcpp::export]]
Rcpp::NumericVector hawk_process_cache_6(Rcpp::NumericVector x,
double beta = 3) {
int n = x.size();
NumericVector B = Rcpp::no_init(n);
double x_i, exp_pre, exp_pre_cumsum = 0, x_exp_pre_cumsum = 0;
for (int i = 0; i < n; ++i) {
x_i = x[i];
exp_pre = exp(beta * x_i);
exp_pre_cumsum += exp_pre;
x_exp_pre_cumsum += x_i * exp_pre;
B[i] = (x_i * exp_pre_cumsum - x_exp_pre_cumsum) / exp_pre;
}
return B;
}
Тест для x = rnorm(1e6)
:
Unit: milliseconds
expr min lq mean median uq max neval cld
hawk_process_cache_5(x) 42.52886 43.53653 45.28427 44.46688 46.74129 57.38046 100 a
hawk_process_cache_6(x) 42.14778 43.19054 45.93252 44.28445 46.51052 153.30447 100 a
Все еще не очень убедительно ..